首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   18篇
  国内免费   21篇
  2024年   1篇
  2023年   7篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   9篇
  2018年   5篇
  2017年   2篇
  2016年   11篇
  2015年   6篇
  2014年   8篇
  2013年   14篇
  2012年   5篇
  2011年   9篇
  2010年   8篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   9篇
  2004年   6篇
  2003年   8篇
  2002年   9篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
91.
Aim To evaluate how factors acting at different spatial scales influence range limits in bird species of the Colombian Andes. Location Andes Mountains of Colombia. Methods We used Maxent , a climate envelope model (CEM), and environmental and geographic information to study range‐filling (i.e. the extent to which a species occurs in all the areas in which it is predicted to occur) in 70 range‐restricted bird species of the Colombian Andes. Environmental data were taken from the WorldClim database, and species occurrence data were taken from museum data collated by the BioMap project, an observational database, and the literature. We evaluated how climate and geographic barriers may shape range limits at two scales. Results At a broad extent (i.e. across the three main cordilleras within the Colombian Andes), we find that CEMs predict there to be suitable environmental conditions for particular species in regions where the species is absent, possibly as a result of dispersal limitation or biotic interactions. In contrast, at a finer scale (within a given cordillera), species generally occur across the entire area predicted to be suitable by a given CEM. Geographic discontinuities within cordilleras do not generally correspond to range limits; instead, range limits correspond to changes in environmental conditions. Main conclusions Our results suggest that different mechanisms influence the presence of species at different scales. Dispersal limitation, potentially combined with species interactions, may influence range limits at a broad extent (the entire Colombian Andes), while strong environmental gradients correspond to range limits at a finer scale (within a cordillera).  相似文献   
92.
春小麦灌浆期籽粒沉淀值动态变化及氮磷肥与播期的影响   总被引:3,自引:2,他引:1  
通过3个品质类型春小麦品种施肥和播期大田试验,建立了灌浆期籽粒沉淀值动态变化的曲线拟合方程,定量揭示籽粒沉淀值动态变化规律及氮磷肥与播期的影响效应.结果表明,自开花15 d始至成熟,籽粒沉淀值随时间变化呈先升高后降低的单峰曲线变化.在灌浆期籽粒沉淀值的动态变化过程中,不同基因型特点不同,且基因型间的关系也随之发生变化.各品种沉淀值积累速度的变化决定了成熟时高蛋白强筋品种沉淀值最高、高蛋白中筋品种次之、低蛋白弱筋品种最低.氮水平增加,高蛋白强筋和低蛋白弱筋品种沉淀值和曲线最高值降低,高蛋白中筋品种则明显升高;高蛋白强筋品种曲线最高值出现时间提前,而高蛋白中筋和低蛋白弱筋品种则推后.磷水平增加,高蛋白品种沉淀值和曲线最高值普遍提高,而低蛋白品种则降低;各基因型曲线最高值出现时间均推迟.氮磷(钾)素平衡配施是形成较高沉淀值的关键.在没有水分胁迫情况下,光温互作是影响籽粒沉淀值动态形成的首要条件,其次为降水;而≥10 ℃积温则为最敏感因子,即在较高光温条件互作前提下,增加灌浆期≥10 ℃积温则提高各基因型品种沉淀值.高蛋白比低蛋白品种更易受氮磷水平和气象条件影响.  相似文献   
93.
Proteolytic dissection of a hapten binding site   总被引:1,自引:0,他引:1  
J Sen  S Beychok 《Proteins》1986,1(3):256-262
IgG Gar, a human myeloma protein that binds riboflavin with a high affinity, was used to derive variable region fragments from the heavy chain and the light chain. Riboflavin binding ability of the active site generated by V(H) and light chain and the active site generated by V(H) and V(L) was compared to riboflavin binding by the F(ab) fragment. The riboflavin binding ability of the F(ab) fragment is the same as the intact molecule, while the binding ability of the active site formed by V(H) and light chain is lowered by two to three orders of magnitude, indicating that the removal of C(H1) domain decreases the interaction between riboflavin and the amino acids that is important in tight binding of riboflavin. Removal of the third hypervariable region and the constant region domain from the light chain further lowers the binding constant by one order of magnitude. The results indicate that the V(H) and V(L) segments of IgG Gar can reconstitute a riboflavin binding site. The decrease in affinity probably reflects a decrease in the rigidity with which the hypervariable loops are held together to place the contact amino acid residues in optimal contact with the hapten.  相似文献   
94.
Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source–sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses.  相似文献   
95.
High light induced photooxidation (HLIP) usually leads to leaf premature senescence and causes great yield loss in winter wheat. In order to explore the genetic control of wheat tolerance to HLIP stress, a quantitative trait loci (QTL) analysis was conducted on a set of doubled haploid population, derived from two winter wheat cultivars. Actual values of chlorophyll content (Chl), minimum fluorescence level (Fo), maximum fluorescence level (Fm), and the maximum quantum efficiency of photosystem Ⅱ (Fv/Fm) under both HLIP and non-stress conditions as well as the ratios of HLIP to non-stress were evaluated. HLIP considerably reduced Chl, Fm, and Fv/Fm, but increased Fo, compared with that under non-stress condition. A total of 27, 16, and 28 QTLs were associated with the investigated traits under HLIP and non-stress and the ratios of HLIP to non-stress, respectively. Most of the QTLs for the ratios of HLIP to non-stress collocated or nearly linked with those detected under HLIP condition. HLIP-induced QTLs were mapped on 15 chromosomes, involving in 1A, 1B, 1D,2A, 2B, 2D, 3A, 3B, 4A, 4D, 5B, 6A, 6B, 7A, and 7D while those expressed under non-stress condition involved in nine chromosomes, including 1B, 1D, 2A, 2B, 3B, 4A, 5A, 5B, and 7A. The expression patterns of QTLs under HLIP condition were different from that under non-stress condition except for six loci on five chromosomes. The phenotypic variance explained by individual QTL ranged from 5.0% to 19.7% under HLIP, 8.3% to 20.8% under non-stress, and 4.9% to 20.2% for the ratios of HLIP to non-stress, respectively. Some markers, for example,Xgwm192 and WMC331 on 4D regulating Chl, Fo, Fm, and Fv/Fm under HLIP condition, might be used in marker assistant selection.  相似文献   
96.
97.

Aim

To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change.

Location

South African Cape Floristic Region.

Methods

We use data‐driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species‐specific models employ a hybrid approach that simulates population dynamics and long‐distance dispersal on top of expected spatio‐temporal dynamics of suitable habitat.

Results

Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography.

Main conclusions

Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data‐driven, demographic assessments in conservation biogeography.
  相似文献   
98.
The nervous system is composed of cells including neurons and glia. It has been believed that the former cells play central roles in various neural functions while the latter ones have only supportive functions for neurons. However, recent findings suggest that glial cells actively participate in neural activities, and the cooperation between neurons and glia is important for nervous system functions. In Caenorhabditis elegans, amphid sensory organs in the head also consist of sensory neurons and glia-like support cells (amphid socket and amphid sheath cells). Ciliary endings of some sensory neurons exposed to the environment detect various chemicals, molecules and signals, and the cilia of some neurons can also take up fluorescent dyes such as DiI. Here, we show that the amphid sheath glia are also stained with DiI and that its uptake by the amphid sheath cells correlates with DiI-filling of sensory neurons, suggesting that the amphid sheath glia might interact with sensory neurons. Furthermore, the localization of the amphid sheath cell reporter F52E1.2SP::YFP is abnormal in che-2 mutants, which have defective cilia. These findings imply that sensory neurons might affect amphid sheath glia functions in the amphid sensory organ of C. elegans.  相似文献   
99.
100.
doi: 10.1111/j.1741‐2358.2011.00479.x
Use of polymethylmethacrylate as permanent filling agent in the jaw, mouth and face regions – implications for dental practice Objectives: This article is a review of PMMA focusing on its properties, indications, contra‐indications and adverse effects. Background: The search to remain young is a constant attitude among Brazilians. The low cost of filling agents have stimulated its indiscriminate use, especially the bioplasty (non‐incisional method). Polymethylmethacrylate (PMMA) is the cosmetic filling agent of choice, because of its low cost, easy access and simple application technique. The impact on dentistry and orofacial medicine needs further awareness. Conclusion: The article aims to draw the attention of odontology and medical professionals to the product's applicability and its possible complications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号