首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6008篇
  免费   360篇
  国内免费   127篇
  2023年   61篇
  2022年   61篇
  2021年   107篇
  2020年   155篇
  2019年   152篇
  2018年   148篇
  2017年   144篇
  2016年   149篇
  2015年   183篇
  2014年   243篇
  2013年   320篇
  2012年   172篇
  2011年   195篇
  2010年   141篇
  2009年   272篇
  2008年   279篇
  2007年   264篇
  2006年   236篇
  2005年   249篇
  2004年   200篇
  2003年   191篇
  2002年   204篇
  2001年   190篇
  2000年   134篇
  1999年   141篇
  1998年   154篇
  1997年   126篇
  1996年   135篇
  1995年   129篇
  1994年   117篇
  1993年   91篇
  1992年   92篇
  1991年   83篇
  1990年   80篇
  1989年   109篇
  1988年   98篇
  1987年   73篇
  1986年   69篇
  1985年   81篇
  1984年   102篇
  1983年   45篇
  1982年   58篇
  1981年   62篇
  1980年   38篇
  1979年   47篇
  1978年   35篇
  1977年   24篇
  1976年   18篇
  1975年   9篇
  1974年   10篇
排序方式: 共有6495条查询结果,搜索用时 15 毫秒
991.
Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney‐shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin‐rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening.  相似文献   
992.
993.
Senescence is accompanied by loss of reproductive functions. Here, we studied reproductive ageing in Drosophila melanogaster males and asked whether the expected decline in male reproductive success is due to diminished functionality of the male accessory gland (AG). The male AG produces the majority of seminal fluid proteins (SFPs) transferred to the female at mating. SFPs induce female postmating changes and are key to male reproductive success. We measured age‐dependent gene expression changes for five representative SFP genes in males from four different age groups ranging from 1 to 6 weeks after eclosion. Simultaneously, we also measured male reproductive success in postmating traits mediated by transfer of these five SFPs. We found a decreased in male SFP gene expression with advancing age and an accompanying decline in male postmating success. Hence, male reproductive senescence is associated with a decline in functionality of the male AG. While overall individual SFP genes decreased in expression, our results point towards the idea that the composition of an ejaculate might change with male age as the rate of change was variable for those five genes.  相似文献   
994.
995.
Sexes' roles in post‐copulatory processes have important effects on individual fitness and are promising to study in species showing complex mating behaviours. In the spider Schizocosa malitiosa, males perform two different copulatory patterns, pattern 1 includes 80% of total pedipalp insertions and pattern 2 includes 20%. Both patterns produce similar number of offspring, but pattern 1 induces higher female reluctance to remating than pattern 2. We hypothesised that the complex copulatory patterns are linked to post‐copulatory sexual selection, affecting males' sperm transfer and the resulting sperm storage by females. First, we examined amounts of sperm in males and live females from uninterrupted (pattern 1 + 2) and interrupted matings (pattern 1, pattern 2). Second, in order to disentangle male and female actions, we induced males to mate with dead females and examined amounts of sperm. Males transfer in total 71% of the sperm available in their pedipalps, being higher but not significant in pattern 1 than in pattern 2. Females drastically reduced the amount of sperm stored in their spermathecae and such control is stronger in pattern 1 compared to pattern 2 matings. We propose that cryptic female control is a main factor driving males to strengthen sperm transfer. Active female reduction in ejaculate most probably diminished her reluctance to remate.  相似文献   
996.
In sedentary externally fertilizing species, direct interactions between mating partners are limited and prefertilization communication between sexes occurs largely at the gamete level. Certain combinations of eggs and sperm often have higher fertilization success than others, which may be contingent on egg‐derived chemical factors that preferentially attract sperm from compatible males. Here, we examine the mechanisms underlying such effects in the marine mussel Mytilus galloprovincialis, where differential sperm attraction has recently been shown to be associated with variation in offspring viability. Specifically, we focus on the sperm surface glycans, an individually unique layer of carbohydrates that moderate self‐recognition and other cellular‐level interactions. In many species egg‐derived factors trigger remarkable changes in the sperm's glycan layer, physiology, and swimming behavior, and thus potentially moderate mate choice at the gamete level. Here, we show that sperm glycan modifications and the strength of acrosome reaction are both dependent on specific male–female interactions (male–female combination). We also find associations between female‐induced sperm glycan changes and the Ca2+ influx into sperm–‐a key regulator of fertilization processes from sperm capacitation to gamete fusion. Together, our results suggest that female‐induced remote regulation of sperm physiology may constitute a novel mechanism of gamete‐level mate choice.  相似文献   
997.
In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within‐group male relatedness across pre‐ and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more—rather than fewer—sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade‐offs between male investment in pre‐ versus postcopulatory competition, differences in the relative relatedness of pre‐ versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within‐group male relatedness may have contrasting effects in different mechanisms of sexual selection.  相似文献   
998.
Here we report the discovery of an Early Carboniferous (Late Visean) 3D cephalopod beak displaying significant similarity to the lower beak of Recent coleoids. It was uncovered in a fragmentarily preserved, longiconic shell from the Moorefield Formation in Arkansas, USA. This shell comprises a fractured 29‐mm‐long body chamber having a maximum diameter of ~14 mm and showing an indistinct pro‐ostracum‐like structure. The beak‐bearing shell could easily have been mistaken for a bactritid or orthocerid if it were not for a coleoid‐type, weakly mineralized, evidently organic‐rich shell wall which shows a lamello‐columnar ultrastructure of a bulk of shell wall thickness and plate ultrastructure of thin outer layer. The specimen is assigned to an as‐yet unnamed shelled coleoid of a so far unknown high‐level taxonomic group. A partially exposed, 4.0‐mm‐long portion of the beak is the lower beak in oblique view from its left side. It exhibits fractured anthracite‐like black, apparently originally chitin material, helmet‐like general shape, broad hood with narrow shallow median groove and small notch posteriorly, pronounced pointed, non‐biomineralized upside belt rostrum, high shoulder and about a 90–100 degrees jaw angle. A broad hood and massive rostrum emphasize its similarity to the lower mandible of Recent Vampyroteuthis and signify that its unique, among living coleoids, structure has been existed for at least since Late Visean time (~333 my).  相似文献   
999.
Trichomes (‘hair cells’) on Arabidopsis thaliana stem and leaf surfaces provide a range of benefits arising from their shape and disposition. These include tempting herbivores to sample constitutive toxins before they reach the bulk of the tissue. We asked whether, in addition, small mechanical disturbances such as an insect can make elicit signals that might help the plant respond to herbivory. We imaged, pressed and brushed trichomes in several ways, most notably with confocal microscopy of trichomes transgenically provided with apoplastic pH reporter apo‐pHusion and cytosolic Ca2+ reporter cameleon. In parallel, we modelled trichome wall mechanics with finite element analysis. The stimulated trichome focuses force on a pliant zone and the adjoining podium of the stalk. A buckling instability can further focus force on a skirt of cells surrounding the podium, eliciting oscillations of cytosolic Ca2+ and shifts in apoplastic pH. These observations represent active physiological response. Modelling establishes that the effectiveness of force focusing and buckling is due to the peculiar tapering wall structure of the trichome. Hypothetically, these active mechanosensing functions enhance toxin synthesis above constitutive levels, probably via a priming process, thus minimizing the costly accumulation of toxins in the absence of herbivore attack but assuring rapid build‐up when needed.  相似文献   
1000.
Glucuronoxylan (GX), an important component of hemicellulose in the cell wall, appears to affect aluminium (Al) sensitivity in plants. To investigate the role of GX in cell‐wall‐localized xylan, we examined the Arabidopsis thaliana parvus mutant in detail. This mutant lacks α‐D‐glucuronic acid (GlcA) side chains in GX and has greater resistance to Al stress than wild‐type (WT) plants. The parvus mutant accumulated lower levels of Al in its roots and cell walls than WT despite having cell wall pectin content and pectin methylesterase (PME) activity similar to those of WT. Our results suggest that the altered properties of hemicellulose in the mutant contribute to its decreased Al accumulation. Although we observed almost no differences in hemicellulose content between parvus and WT under control conditions, less Al was retained in parvus hemicellulose than in WT. This observation is consistent with the finding that GlcA substitutions in WT GX, but not mutant GX, were increased under Al stress. Taken together, these results suggest that the modulation of GlcA levels in GX affects Al resistance by influencing the Al binding capacity of the root cell wall in Arabidopsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号