首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6032篇
  免费   573篇
  国内免费   96篇
  2024年   9篇
  2023年   74篇
  2022年   91篇
  2021年   118篇
  2020年   169篇
  2019年   211篇
  2018年   240篇
  2017年   164篇
  2016年   167篇
  2015年   181篇
  2014年   277篇
  2013年   373篇
  2012年   129篇
  2011年   299篇
  2010年   330篇
  2009年   349篇
  2008年   454篇
  2007年   406篇
  2006年   372篇
  2005年   346篇
  2004年   275篇
  2003年   263篇
  2002年   198篇
  2001年   100篇
  2000年   90篇
  1999年   97篇
  1998年   115篇
  1997年   89篇
  1996年   67篇
  1995年   85篇
  1994年   63篇
  1993年   60篇
  1992年   45篇
  1991年   40篇
  1990年   32篇
  1989年   31篇
  1988年   29篇
  1987年   24篇
  1986年   16篇
  1985年   24篇
  1984年   57篇
  1983年   34篇
  1982年   38篇
  1981年   24篇
  1980年   24篇
  1979年   11篇
  1978年   3篇
  1977年   4篇
  1972年   1篇
  1958年   1篇
排序方式: 共有6701条查询结果,搜索用时 31 毫秒
181.
Renal salt and water transport physiology has benefited tremendously from the rapid advance of proteomics. Proteomics developed as a fast-throughput means of screening for global changes in proteins in a selected tissue, organ or cell type, as a logical offshoot of similar comprehensive, messenger RNA array-type technology. Targeted proteomics utilizes similar techniques but examines a predetermined set of proteins. One approach that has been rigorously employed over the last 10 years to evaluate differences in renal protein abundances due to a treatment or genotype has been parallel semiquantitative immunoblotting using antibody arrays. This approach, and newer ones on the horizon, provide a rapid global overview of regulation of the individual proteins whose integrated action determines overall renal sodium or water reabsorption.  相似文献   
182.
The interaction between cyproheptadine hydrochloride (CYP) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy (FT‐IR) and molecular modeling at a physiological pH (7.40). Fluorescence of HSA was quenched remarkably by CYP and the quenching mechanism was considered as static quenching since it formed a complex. The association constants Ka and number of binding sites n were calculated at different temperatures. According to Förster's theory of non‐radiation energy transfer, the distance r between donor (human serum albumin) and acceptor (cyproheptadine hydrochloride) was obtained. The effect of common ions on the binding constant was also investigated. The effect of CYP on the conformation of HSA was analyzed using FT‐IR, synchronous fluorescence spectroscopy and 3D fluorescence spectra. The thermodynamic parameters ΔH and ΔS were calculated to be ?14.37 kJ mol?1 and 38.03 J mol?1 K?1, respectively, which suggested that hydrophobic forces played a major role in stabilizing the HSA‐CYP complex. In addition, examination of molecular modeling indicated that CYP could bind to site I of HSA and that hydrophobic interaction was the major acting force, which was in agreement with binding mode studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
183.
The interaction between strictosamide (STM) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling under physiological pH 7.4. STM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding site number n and apparent binding constant Ka were determined at different temperatures by fluorescence quenching. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated as ?3.01 kJ/mol and 77.75 J/mol per K, respectively, which suggested that the hydrophobic force played major roles in stabilizing the HSA–STM complex. The distance r between donor and acceptor was obtained to be 4.10 nm according to Förster's theory. After the addition of STM, the synchronous fluorescence and three‐dimensional fluorescence spectral results showed that the hydrophobicity of amino acid residues increased and the circular dichroism spectral results showed that the α‐helix content of HSA decreased (from 61.48% to 57.73%). These revealed that the microenvironment and conformation of HSA were changed in the binding reaction. Furthermore, the study of molecular modeling indicated that STM could bind to site I of HSA and the hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
184.
Abstract

The capacity to control quadruplex formation, especially in cancer cells, is captivating and entails a reasonable comprehension of the ligand-G-quadruplex binding. Herein, we report an iminopyrenyl-β-cyclodextrin conjugate interacting with duplex and G-quadrulex DNAs. In addition, the host: guest association of the established G-quadruplex binder, berberine, with the β-cyclodextrin derivative is studied employing 2-D ROESY. NMR, UV-visible, and fluorescence spectroscopic techniques are utilized to explore the β-cyclodextrin conjugate's interaction with the quadruplexes. The Binding constants are accounted for the association of the ligands to each of the DNAs viz., calf thymus DNA (duplex), kit22, telo24, and myc22 (quadruplexes). The modulation of the iminopyrenyl-β-cyclodextrin binding to the DNAs are observed when berberine is loaded in the host molecule. A vivid distinction between the interactions of the ligands with duplex and quadruplex structures is inferred. Berberine-loaded iminopyrenyl-β-cyclodextrin shows a higher affinity for binding to kit22.  相似文献   
185.
Abstract

An improved method for the synthesis of 5-aminocytidine (3a), 5-amino-2′-deoxycytidine (3b), and their 5′-monophosphates (3c,d) from the corresponding 5-bromo pyrimidines, using liquid ammonia, is described. The respective 6-aminocytosine derivatives (4a,b,c,d), minor products of the amination reaction, were isolated and characterized. A plausible mechanism is proposed to account for the formation of both 5-and 6-substituted products.  相似文献   
186.

Sixteen diribonucleoside (3′-5′)-H-phosphonates were synthesized via condensation of the protected ribonucleoside 3′-H-phosphonates with nucleosides, and the influence of a nucleoside sequence on the observed stereoselectivity was analyzed. 31P NMR spectroscopy was used to evaluate a relationship between chemical shift and absolute configuration at the phosphorous center of the H-phosphonate diesters as well as of the corresponding phosphorothioate diesters. Although for the most cases such correlation was found, there was however several exceptions to the rule where the relative positions of resonances arising from R P and S P diastereomers were reversed.  相似文献   
187.
Hydrogen cyanide (HCN) in breath has been suggested as a diagnostic tool for cyanide poisoning and for cyanide-producing bacterial infections. To distinguish elevated levels of breath HCN, baseline data are needed. Background levels of HCN were measured in mixed exhaled air from 40 healthy subjects (26 men, 14 women, age 21–61 years; detection limit: 1.5?ppb; median: 4.4?ppb; range <1.5–14?ppb) by near-infrared cavity ring down spectroscopy (CRDS). No correlation was observed with smoking habits, recent meals or age. However, female subjects had slightly higher breath levels of HCN than male subjects. CRDS has not previously been used for this purpose.  相似文献   
188.
《Biomarkers》2013,18(8):739-745
Isothiocyanates (ITCs) found in cruciferous vegetables have been associated with a reduced cancer risk in humans. We determined serum albumin adducts of allyl isothiocyanate (AITC), benzylisothiocyanate (BITC), phenylethylisothiocyanate (PEITC) and sulforaphane (SFN) in 85 healthy men from a dietary, randomized, controlled trial. After enzymatic digestion of albumin we determined the adducts of the ITCs with lysine (Lys) using liquid chromatography–tandem mass spectrometry. At the beginning of the study (and after 4 weeks) 4.7% (2.4%), 48.2% (35.3%), 5.9% (10.6%), and 24.7% (23.5%) of the samples were found positive for AITC-Lys, BITC-Lys, PEITC-Lys and SFN-Lys, respectively. This method enables the quantification of ITC adducts in albumin from large, prospective studies on diet and cancer.  相似文献   
189.
A previous report of this work (Ringeissen et al. 2003) described the use of nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical data analysis (MVDA) to identify novel biomarkers of peroxisome proliferation (PP) in Wistar Han rats. Two potential biomarkers of peroxisome proliferation in the rat were described, N-methylnicotinamide (NMN) and N-methyl-4-pyridone-3-carboxamide (4PY). The inference from these results was that the tryptophan-nicotinamide adenine dinucleotide (NAD+) pathway was altered in correlation with peroxisome proliferation, a hypothesis subsequently confirmed by TaqMan® analysis of the relevant genes encoding two key enzymes in the pathway, aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) and quinolinate phosphoribosyltransferase (EC 2.4.2.19). The objective of the present study was to investigate these data further and identify other metabolites in the NMR spectrum correlating equally with PP. MVDA Partial Least Squares (PLS) models were constructed that provided a better prediction of PP in Wistar Han rats than levels of 4PY and NMN alone. The resulting Wistar Han rat predictive models were then used to predict PP in a test group of Sprague Dawley rats following administration of fenofibrate. The models predicted the presence or absence of PP (above on arbitrary threshold of >2-fold mean control) in all Sprague Dawley rats in the test group.  相似文献   
190.
Aquaporins (AQPs) are channel proteins that facilitate the transport of water and small solutes across biological membranes. In plants, AQPs exhibit a high multiplicity of isoforms in relation to a high diversity of sub‐cellular localizations, at the plasma membrane (PM) and in various intracellular compartments. Some members also exhibit a dual localization in distinct cell compartments, whereas others show polarized or domain‐specific expression at the PM or tonoplast, respectively. A diversity of mechanisms controlling the routing of newly synthesized AQPs towards their destination membranes and involving diacidic motifs, phosphorylation or tetramer assembly is being uncovered. Recent approaches using single particle tracking, fluorescence correlation spectroscopy and fluorescence recovery after photobleaching have, in combination with pharmacological interference, stressed the peculiarities of AQP sub‐cellular dynamics in environmentally challenging conditions. A role for clathrin and sterol‐rich domains in cell surface dynamics and endocytosis of PM AQPs was uncovered. These recent advances provide deep insights into the cellular mechanisms of water transport regulation in plants. They also point to AQPs as an emerging model for studying the sub‐cellular dynamics of plant membrane proteins .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号