首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   11篇
  国内免费   2篇
  2023年   6篇
  2022年   15篇
  2021年   9篇
  2020年   7篇
  2019年   16篇
  2018年   5篇
  2017年   6篇
  2016年   2篇
  2015年   17篇
  2014年   22篇
  2013年   13篇
  2012年   8篇
  2011年   9篇
  2010年   13篇
  2009年   24篇
  2008年   20篇
  2007年   11篇
  2006年   14篇
  2005年   12篇
  2004年   7篇
  2003年   8篇
  2002年   12篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有279条查询结果,搜索用时 31 毫秒
21.
22.
23.
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.  相似文献   
24.
Early embryogenesis has been examined experimentally in several echinoderm and hemichordate classes. Although these studies suggest that the mechanisms which underlie regional specification have been highly conserved within the echinoderm + hemichordate clade, nothing is known about these mechanisms in several other echinoderm classes, including the Ophiuroidea. In this study, early embryogenesis was examined in a very little studied animal, the ophiuroid Ophiopholis aculeata. In O. aculeata, the first two cleavage planes do not coincide with the animal-vegetal axis but rather form approximately 45 degrees off this axis. A fate map of the early embryo was constructed using microinjected lineage tracers. Most significantly, this fate map indicates that there is a major segregation of ectodermal from endomesodermal fates at first cleavage. The distribution of developmental potential in the early embryo was also examined by isolating different regions of the early embryo and following these isolates though larval development. These analyses indicate that endomesodermal developmental potential segregates unequally at first, second, and third cleavage in O. aculeata. These results provide insight into the mechanisms of regional specification in O. aculeata and yield new material for the study of the evolution of echinoderm development.  相似文献   
25.
A mature inner ear is a complex structure consisting of vestibular and auditory components. Microsurgical ablations, rotations, and translocations were performed in ovo to identify the tissues that control inner ear morphogenesis. We show that mesenchyme/ectoderm adjacent to the developing ear specifically governs the shape of vestibular components - the semicircular canals and ampullae - by conferring anteroposterior axial information to these structures. In contrast, removal of individual hindbrain rhombomeres adjacent to the developing ear preferentially affects the growth and morphogenesis of the auditory subdivision, the cochlear duct, or basilar papilla. Removal of rhombomere 5 affects cochlear duct growth, while rhombomere 6 removal affects cochlear growth and morphogenesis. Rotating rhombomeres 5 and 6 along the anteroposterior axis also impacts cochlear duct morphogenesis but has little effect on the vestibular components. Our studies indicate that discrete tissues, acting at a distance, control the morphogenesis of distinct elements of the inner ear. These results provide a basis for identifying factors that are essential to vestibular and auditory development in vertebrates.  相似文献   
26.
27.
The Drosophila melanogaster ventral nerve cord derives from neural progenitor cells called neuroblasts. Individual neuroblasts have unique gene expression profiles and give rise to distinct clones of neurons and glia. The specification of neuroblast identity provides a cell intrinsic mechanism which ultimately results in the generation of progeny which are different from each other. Segment polarity genes have a dual function in early neurogenesis: within distinct regions of the neuroectoderm, they are required both for neuroblast formation and for the specification of neuroblast identity. Previous studies of segment polarity gene function largely focused on neuroblasts that arise within the posterior part of the segment. Here we show that the segment polarity gene midline is required for neuroblast formation in the anterior-most part of the segment. Moreover, midline contributes to the specification of anterior neuroblast identity by negatively regulating the expression of Wingless and positively regulating the expression of Mirror. In the posterior-most part of the segment, midline and its paralog, H15, have partially redundant functions in the regulation of the NB marker Eagle. Hence, the segment polarity genes midline and H15 play an important role in the development of the ventral nerve cord in the anterior- and posterior-most part of the segment.  相似文献   
28.
Prototroch formation was studied in the polychaete Nereis virens using light, scanning electron, and confocal laser microscopy. Cell lineage of trochoblasts was followed and chronology of their appearance was determined. The prototroch ciliary ring is formed by twelve descendants of micromere 1m 2. The remaining four primary trochoblasts have no cilia and, together with descendants of accessory trochoblasts, become anterior supporting cells of the prototroch. Posterior supporting cells are formed by secondary trochoblasts, which are derived from the second micromere quartet 2m. The results obtained make it possible to analyze one of the ancient programs of animal development.  相似文献   
29.
The commitment of regions of the embryo to form particular tissues or organs is a central concept in development, but the mechanisms controlling this process remain elusive. The well‐studied model of lens induction is ideal for dissecting key phases of the commitment process. We find in Xenopus tropicalis, at the time of specification of the lens, i.e., when presumptive lens ectoderm (PLE) can be isolated, cultured, and will differentiate into a lens that the PLE is not yet irreversibly committed, or determined, to form a lens. When transplanted into the posterior of a host embryo lens development is prevented at this stage, while ~ 3 h later, using the same assay, determination is complete. Interestingly, we find that specified lens ectoderm, when cultured, acquires the ability to become determined without further tissue interactions. Furthermore, we show that specified PLE has a different gene expression pattern than determined PLE, and that determined PLE can maintain expression of essential regulatory genes (e.g., foxe3, mafB) in an ectopic environment, while specified PLE cannot. These observations set the stage for a detailed mechanistic study of the genes and signals controlling tissue commitment. genesis 50:728–740, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
30.
Isothermal titration calorimetry is able to provide accurate information on the thermodynamic contributions of enthalpy and entropy changes to free energies of binding. The Structure/Calorimetry of Reported Protein Interactions Online database of published isothermal titration calorimetry studies and structural information on the interactions between proteins and small-molecule ligands is used here to reveal general thermodynamic properties of protein-ligand interactions and to investigate correlations with changes in solvation. The overwhelming majority of interactions are found to be enthalpically favoured. Synthetic inhibitors and biological ligands form two distinct subpopulations in the data, with the former having greater average affinity due to more favourable entropy changes on binding. The greatest correlation is found between the binding free energy and apolar surface burial upon complex formation. However, the free-energy contribution per unit area buried is only 30-50% of that expected from earlier studies of transfer free energies of small molecules. A simple probability-based estimator for the maximal affinity of a binding site in terms of its apolar surface area is proposed. Polar surface area burial also contributes substantially to affinity but is difficult to express in terms of unit area due to the small variation in the amount of polar surface buried and a tendency for cancellation of its enthalpic and entropic contributions. Conventionally, the contribution of apolar desolvation to affinity is attributed to gain of entropy due to solvent release. Although data presented here are supportive of this notion, because the correlation of entropy change with apolar surface burial is relatively weak, it cannot, on present evidence, be confidently considered to be correct. Further, thermodynamic changes arising from small differences between ligands binding to individual proteins are relatively large and, in general, uncorrelated with changes in solvation, suggesting that trends identified across widely differing proteins are of limited use in explaining or predicting the effects of ligand modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号