首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5184篇
  免费   693篇
  国内免费   1767篇
  2024年   47篇
  2023年   183篇
  2022年   257篇
  2021年   292篇
  2020年   354篇
  2019年   422篇
  2018年   332篇
  2017年   330篇
  2016年   350篇
  2015年   303篇
  2014年   366篇
  2013年   378篇
  2012年   334篇
  2011年   318篇
  2010年   278篇
  2009年   338篇
  2008年   344篇
  2007年   318篇
  2006年   315篇
  2005年   254篇
  2004年   237篇
  2003年   211篇
  2002年   172篇
  2001年   138篇
  2000年   155篇
  1999年   99篇
  1998年   87篇
  1997年   63篇
  1996年   58篇
  1995年   62篇
  1994年   37篇
  1993年   30篇
  1992年   28篇
  1991年   25篇
  1990年   16篇
  1989年   15篇
  1988年   14篇
  1987年   15篇
  1986年   13篇
  1985年   12篇
  1984年   14篇
  1983年   3篇
  1982年   15篇
  1981年   1篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1976年   1篇
排序方式: 共有7644条查询结果,搜索用时 15 毫秒
51.
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.  相似文献   
52.

Aim

The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) assess the ability of various environmental-based ocean regionalizations to explain the distribution of these communities.

Location

Global ocean, 0–500 m depth.

Time Period

2008–2019.

Major Taxa Studied

Twenty-eight groups of large mesoplanktonic and macroplanktonic organisms, covering Metazoa, Rhizaria and Cyanobacteria.

Methods

From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribution of large (>600 μm) mesoplanktonic organisms. Among the 6.8 million imaged objects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA).

Results

Within the observed size range, epipelagic plankton communities were Trichodesmium-enriched in the intertropical Atlantic, Copepoda-enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high latitudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin-level environmental conditions.

Main Conclusions

In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cyanobacteria in structuring large mesoplankton communities.  相似文献   
53.
54.
Colonization is a fundamental ecological process that is important for the persistence of species, particularly when a changing environment necessitates range shifts. Vacant habitats available for colonization often arise from landscape disturbance. Colonization and population expansion processes can be inferred by examining the levels and spatial distribution of genetic variation of plant populations with known disturbance histories. Samples (N = 690) of the terrestrial orchid, Epidendrum radicans, were collected from five lava flow sites on the slopes of Volcán Arenal in Costa Rica that last experienced major eruptions in 1968 and 1992. Individuals were also sampled (N = 188) from four regional populations. Samples were characterized using 15 nuclear genetic markers and analyzed using population genetics statistics. Genetic diversity within sites was moderate (He = 0.092–0.192). Contrary to expectation, diversity tended to be lower on the older lava flows (0.131 vs. 0.172) which may reflect their more sheltered topography that restricted pollen/seed immigration, and/or greater intra- and interspecific competition. Genetic diversity measures indicate that the lava flows were colonized by numerous individuals that likely originated from multiple sources while spatial genetic structure (SGS) statistics indicate that most recruitment in the study sites subsequent to colonization resulted from in situ reproduction and localized seed deposition. Younger sites had significantly greater SGS over larger distances which reflects fewer reproductive events, and less spatial and temporal overlap of seed shadows relative to the older sites. Clones were also generally smaller on the younger sites (≤3 m vs. ≤8 m).  相似文献   
55.
Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low-Fe stress-induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low-Fe stress, diatoms alter plastid-specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid-localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well-studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid-enriched fractions from Thalassiosira pseudonana to gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry-based peptide identification and quantification, we analyzed T. pseudonana grown under Fe-replete and -limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light-harvesting proteins. In silico localization predictions of proteins identified in this plastid-enriched proteome allowed for an in-depth comparison of theoretical versus observed plastid-localization, providing evidence for the potential of additional protein import pathways into the diatom plastid.  相似文献   
56.
Colonies of the African stink ant Paltothyreus tarsatuslocated in the forest have nests with shorter horizontal galleries and a smaller total foraging surface than colonies located in open areas. Each solitary worker specializes on the same central or peripheral hunting zone but she does not specialize on a particular sector during group-retrieving. The search for prey is characterized by a wandering walk with spatial parameters varying in two ways. Capture of a termite releases a path characterized by sinuosity and a decrease in speed of movement. In contrast, a failure in the course of an attempted capture releases an increase in both sinuosity and speed of movement corresponding to a socalled reserve behavior. Each worker shortens her retrieving trip in comparison with her search trip and the straightness of the homing paths depends on the size and shape of the prey. Our data show that behavioral flexibility at the individual level in P. tarsatusis important in determining spatial foraging strategy at the colony level.  相似文献   
57.
The population and production ecology of aZizania latifolia stand at a sheltered shore of the Hitachi-Tone River were investigated. Shoot emergence was observed twice a year; the fist was a synchronized shoot emergence in April and the second was from August to October. Aboveground biomass was mostly occupied by leaves and peaked at 1500 g dry weight m−2 in August. The belowground biomass also reached its peak, 750 g dry weight m−2, in August. The secondary shoots were small in spite of their high density. Leaves were produced continuously throughout the season. The leaf life span was as short as 55.6 days for cohorts that emerged from May through to September. Total annual net production ofZ. latifolia could be more than 3400 g dry weight m−2. Shoot clusters of several centimeters were observed in April. The following self-thinning caused a regular distribution of the remaining shoots in August. Most shoots produced in August to October were found near a shoot persisting since April. They showed more concentrated distribution than shoots in April. A large biomass allocation to leaves and the ability to produce many clump shoots during the late growing period may facilitate dominance ofZ. latifolia in relatively sheltered sites.  相似文献   
58.
国家公园是我国推进生态文明建设的重大制度创新,如何科学地对国家公园进行类型划分及空间识别,是国家公园布局和建设中的基础性工作,既有必要性也有紧迫性。本研究以中国国情为基础,参考国际经验,将国家公园划分为荒野导向型、生态优先型、游憩导向型与遗产导向型,构建了一个比较完整的国家公园分类体系。并以自然和人文多样化程度较高的云南为案例,以“双评价”为基础建立了一套指标体系和区划规则,利用人工神经网络建立土地利用演化学习算法,利用融入自适应惯性机制的元胞自动机展开时空模拟,对云南全域进行高分辨率不同类型国家公园的空间辨识,并通过收缩-膨胀原理对识别区域进行比较、修正和优化,进而提出未来云南国家公园布局的综合方案。结果表明: 云南省国家公园主要集中在三江地区与横断山区、滇西以及西南部地区,这3类地区可作为未来国家公园区划与分类保护的重点。本研究所建立的国家公园类型划分和空间识别的一般性可推广的研究范式和工作流程可作为全国应用的参考。  相似文献   
59.
Coronavirus disease 2019 (COVID-19) is a systemic inflammatory condition with high mortality that may benefit from personalized medicine and high-precision approaches. COVID-19 patient plasma was analysed with targeted proteomics of 1161 proteins. Patients were monitored from Days 1 to 10 of their intensive care unit (ICU) stay. Age- and gender-matched COVID-19-negative sepsis ICU patients and healthy subjects were examined as controls. Proteomic data were resolved using both cell-specific annotation and deep-analysis for functional enrichment. COVID-19 caused extensive remodelling of the plasma microenvironment associated with a relative immunosuppressive milieu between ICU Days 3–7, and characterized by extensive organ damage. COVID-19 resulted in (1) reduced antigen presentation and B/T-cell function, (2) increased repurposed neutrophils and M1-type macrophages, (3) relatively immature or disrupted endothelia and fibroblasts with a defined secretome, and (4) reactive myeloid lines. Extracellular matrix changes identified in COVID-19 plasma could represent impaired immune cell homing and programmed cell death. The major functional modules disrupted in COVID-19 were exaggerated in patients with fatal outcome. Taken together, these findings provide systems-level insight into the mechanisms of COVID-19 inflammation and identify potential prognostic biomarkers. Therapeutic strategies could be tailored to the immune response of severely ill patients.  相似文献   
60.
In order to assess the nature of spatial cues in determining the characteristic projection sites of sensory neurons in the CNS, we have transplanted sensory neurons of the cricket Acheta domesticus to ectopic locations. Thoracic campaniform sensilla (CS) function as proprioceptors and project to an intermediate layer of neuropil in thoracic ganglia while cercal CS transduce tactile information and project into a ventral layer in the terminal abdominal ganglion (TAG). When transplanted to ectopic locations, these afferents retain their modality-specific projection in the host ganglion and terminate in the layer of neuropil homologous to that of their ganglion of origin. Thus, thoracic CS neurons project to intermediate neuropil when transplanted to the abdomen and cercal CS neurons project to a ventral layer of neuropil when transplanted to the thorax. We conclude that CS can be separated into two classes based on their characteristic axonal projections within each segmental ganglion. We also found that the sensory neurons innervating tactile hairs project to ventral neuropil in any ganglion they encounter after transplantation. Ectopic sensory neurons can form functional synaptic connections with identified interneurons located within the host ganglia. The new contacts formed by these ectopic sensory neurons can be with normal targets, which arborize within the same layer of neuropil in each segmental ganglion, or with novel targets, which lack dendrites in the normal ganglion and are thus normally unavailable for synaptogenesis. These observations suggest that a limited set of molecular markers are utilized for cell–cell recognition in each segmentally homologous ganglion. Regenerating sensory neurons can recognize novel postsynaptic neurons if they have dendrites in the appropriate layer of neuropil. We suggest that spatial constraints produced by the segmentation and the modality-specific layering of the nervous system have a pivotal role in determining synaptic specificity. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号