首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4510篇
  免费   621篇
  国内免费   1703篇
  6834篇
  2024年   55篇
  2023年   173篇
  2022年   246篇
  2021年   263篇
  2020年   325篇
  2019年   376篇
  2018年   299篇
  2017年   299篇
  2016年   311篇
  2015年   270篇
  2014年   329篇
  2013年   296篇
  2012年   277篇
  2011年   278篇
  2010年   251篇
  2009年   287篇
  2008年   303篇
  2007年   278篇
  2006年   255篇
  2005年   217篇
  2004年   212篇
  2003年   190篇
  2002年   156篇
  2001年   131篇
  2000年   142篇
  1999年   96篇
  1998年   85篇
  1997年   62篇
  1996年   59篇
  1995年   62篇
  1994年   37篇
  1993年   30篇
  1992年   28篇
  1991年   26篇
  1990年   16篇
  1989年   15篇
  1988年   14篇
  1987年   15篇
  1986年   13篇
  1985年   12篇
  1984年   14篇
  1983年   3篇
  1982年   15篇
  1981年   1篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有6834条查询结果,搜索用时 15 毫秒
41.
Connections among species-abundance (i-m i ), species-frequency (i-F i ), and species-sample size (S n -n) relationships were examined on the basis of the mapping data of a natural forest in Thailand. The spatial distribution of individual trees without any discrimination of species was nearly random. Provided that the spatial distribution of each species was random, thei-m i and thei-F i relationship was reconstructed from each other in terms of the total number of species (S) and the total number of individuals (N) in the data. The number of species (S n ) in a subsample consisting ofn individuals was then obtained from thei-F i relationship. Logarithm ofS n increased with logn and showed a convex curve through the origin. The values of diversity indices based onN andS(orn andS n ) were affected by sample size. These trends were further examined on the basis of 944 data sets of biotic communities and three mathematical models of anS-N relationship. The properties of species-area relation were discussed in the light of these results.  相似文献   
42.
The effective management of salmonid fisheries requires that the factors influencing variation in the abundance of stream populations are understood. The use of habitat models to explain the spatial component of population variance offers potential for management, but has not previously been set in the context of long term variation in population abundance because of the lack of suitable data sets. This paper examines contributions of spatial and temporal factors lo fish density variance using a 10-year data set from five tributaries of the River Conwy, North Wales. Recently developed habitat models were applied to the data to test their ability to explain nominal spatial variance. Spatial variance accounted for between 21 and 62% of the overall variance of salmonid abundance, and habitat models explained up to 95% of the spatial variance component. Synchrony in population variation amongst sites within and between tributaries is described, and some of the factors that may influence this are discussed.  相似文献   
43.
Noctiluca scintillans is one of the most common harmful algal species and widely known due to its bioluminescence. In this study, the spatial distribution, seasonal variations, and long-term trends of N. scintillans blooms in China and the related drivers were analyzed and discussed. From 1933 to 2020, a total of 265 events of N. scintillans blooms were recorded in Chinese coastal waters, with a total duration of 1052 days. The first N. scintillans bloom occurred in Zhejiang in 1933, and only three events were recorded before 1980. From 1981 to 2020, N. scintillans caused harmful algal blooms (HABs) almost every year, both the average duration and the proportion of multiphase HABs showed an increasing trend. 1986–1992, 2002–2004, and 2009–2016 were the three peak periods with a frequency of no less than five events of N. scintillans blooms per year. In terms of spatial distribution, N. scintillans blooms spread from the Southeast China Sea to the Bohai Sea after 2000, Guangdong, Fujian, and Hebei were the three provinces with the highest numbers of recorded events of N. scintillans blooms. Moreover, 86.8% of the events of N. scintillans blooms occurred in spring (March, April, and May) and summer (June, July, and August). Among environmental factors, the dissolved inorganic phosphate, dissolved silicate and chemical oxygen demand were significantly correlated with the cell density of N. scintillans during N. scintillans blooms, and most of N. scintillans blooms were recorded in the temperature range of 18.0–25.0°C. Precipitation, hydrodynamics, water temperature, and food availability might be the main factors affecting the spatial–temporal distribution of N. scintillans blooms along the Chinese coast.  相似文献   
44.
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.  相似文献   
45.

Aim

The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) assess the ability of various environmental-based ocean regionalizations to explain the distribution of these communities.

Location

Global ocean, 0–500 m depth.

Time Period

2008–2019.

Major Taxa Studied

Twenty-eight groups of large mesoplanktonic and macroplanktonic organisms, covering Metazoa, Rhizaria and Cyanobacteria.

Methods

From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribution of large (>600 μm) mesoplanktonic organisms. Among the 6.8 million imaged objects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA).

Results

Within the observed size range, epipelagic plankton communities were Trichodesmium-enriched in the intertropical Atlantic, Copepoda-enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high latitudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin-level environmental conditions.

Main Conclusions

In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cyanobacteria in structuring large mesoplankton communities.  相似文献   
46.
47.
Colonization is a fundamental ecological process that is important for the persistence of species, particularly when a changing environment necessitates range shifts. Vacant habitats available for colonization often arise from landscape disturbance. Colonization and population expansion processes can be inferred by examining the levels and spatial distribution of genetic variation of plant populations with known disturbance histories. Samples (N = 690) of the terrestrial orchid, Epidendrum radicans, were collected from five lava flow sites on the slopes of Volcán Arenal in Costa Rica that last experienced major eruptions in 1968 and 1992. Individuals were also sampled (N = 188) from four regional populations. Samples were characterized using 15 nuclear genetic markers and analyzed using population genetics statistics. Genetic diversity within sites was moderate (He = 0.092–0.192). Contrary to expectation, diversity tended to be lower on the older lava flows (0.131 vs. 0.172) which may reflect their more sheltered topography that restricted pollen/seed immigration, and/or greater intra- and interspecific competition. Genetic diversity measures indicate that the lava flows were colonized by numerous individuals that likely originated from multiple sources while spatial genetic structure (SGS) statistics indicate that most recruitment in the study sites subsequent to colonization resulted from in situ reproduction and localized seed deposition. Younger sites had significantly greater SGS over larger distances which reflects fewer reproductive events, and less spatial and temporal overlap of seed shadows relative to the older sites. Clones were also generally smaller on the younger sites (≤3 m vs. ≤8 m).  相似文献   
48.
Colonies of the African stink ant Paltothyreus tarsatuslocated in the forest have nests with shorter horizontal galleries and a smaller total foraging surface than colonies located in open areas. Each solitary worker specializes on the same central or peripheral hunting zone but she does not specialize on a particular sector during group-retrieving. The search for prey is characterized by a wandering walk with spatial parameters varying in two ways. Capture of a termite releases a path characterized by sinuosity and a decrease in speed of movement. In contrast, a failure in the course of an attempted capture releases an increase in both sinuosity and speed of movement corresponding to a socalled reserve behavior. Each worker shortens her retrieving trip in comparison with her search trip and the straightness of the homing paths depends on the size and shape of the prey. Our data show that behavioral flexibility at the individual level in P. tarsatusis important in determining spatial foraging strategy at the colony level.  相似文献   
49.
The population and production ecology of aZizania latifolia stand at a sheltered shore of the Hitachi-Tone River were investigated. Shoot emergence was observed twice a year; the fist was a synchronized shoot emergence in April and the second was from August to October. Aboveground biomass was mostly occupied by leaves and peaked at 1500 g dry weight m−2 in August. The belowground biomass also reached its peak, 750 g dry weight m−2, in August. The secondary shoots were small in spite of their high density. Leaves were produced continuously throughout the season. The leaf life span was as short as 55.6 days for cohorts that emerged from May through to September. Total annual net production ofZ. latifolia could be more than 3400 g dry weight m−2. Shoot clusters of several centimeters were observed in April. The following self-thinning caused a regular distribution of the remaining shoots in August. Most shoots produced in August to October were found near a shoot persisting since April. They showed more concentrated distribution than shoots in April. A large biomass allocation to leaves and the ability to produce many clump shoots during the late growing period may facilitate dominance ofZ. latifolia in relatively sheltered sites.  相似文献   
50.
In order to assess the nature of spatial cues in determining the characteristic projection sites of sensory neurons in the CNS, we have transplanted sensory neurons of the cricket Acheta domesticus to ectopic locations. Thoracic campaniform sensilla (CS) function as proprioceptors and project to an intermediate layer of neuropil in thoracic ganglia while cercal CS transduce tactile information and project into a ventral layer in the terminal abdominal ganglion (TAG). When transplanted to ectopic locations, these afferents retain their modality-specific projection in the host ganglion and terminate in the layer of neuropil homologous to that of their ganglion of origin. Thus, thoracic CS neurons project to intermediate neuropil when transplanted to the abdomen and cercal CS neurons project to a ventral layer of neuropil when transplanted to the thorax. We conclude that CS can be separated into two classes based on their characteristic axonal projections within each segmental ganglion. We also found that the sensory neurons innervating tactile hairs project to ventral neuropil in any ganglion they encounter after transplantation. Ectopic sensory neurons can form functional synaptic connections with identified interneurons located within the host ganglia. The new contacts formed by these ectopic sensory neurons can be with normal targets, which arborize within the same layer of neuropil in each segmental ganglion, or with novel targets, which lack dendrites in the normal ganglion and are thus normally unavailable for synaptogenesis. These observations suggest that a limited set of molecular markers are utilized for cell–cell recognition in each segmentally homologous ganglion. Regenerating sensory neurons can recognize novel postsynaptic neurons if they have dendrites in the appropriate layer of neuropil. We suggest that spatial constraints produced by the segmentation and the modality-specific layering of the nervous system have a pivotal role in determining synaptic specificity. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号