首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15637篇
  免费   1733篇
  国内免费   3285篇
  2024年   105篇
  2023年   382篇
  2022年   494篇
  2021年   592篇
  2020年   730篇
  2019年   862篇
  2018年   693篇
  2017年   745篇
  2016年   765篇
  2015年   667篇
  2014年   815篇
  2013年   1025篇
  2012年   765篇
  2011年   754篇
  2010年   615篇
  2009年   789篇
  2008年   807篇
  2007年   827篇
  2006年   778篇
  2005年   697篇
  2004年   608篇
  2003年   597篇
  2002年   532篇
  2001年   443篇
  2000年   428篇
  1999年   390篇
  1998年   297篇
  1997年   261篇
  1996年   302篇
  1995年   278篇
  1994年   243篇
  1993年   227篇
  1992年   172篇
  1991年   211篇
  1990年   150篇
  1989年   148篇
  1988年   131篇
  1987年   134篇
  1986年   127篇
  1985年   140篇
  1984年   151篇
  1983年   88篇
  1982年   130篇
  1981年   78篇
  1980年   99篇
  1979年   81篇
  1978年   58篇
  1977年   58篇
  1976年   45篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
921.
The spatial configuration of vascular vegetation has been linked to variations in land degradation and ecosystem functioning in drylands. However, most studies on spatial patterns conducted to date have focused on a single or a few study sites within a particular region, specific vegetation types, or in landscapes characterized by a certain type of spatial patterns. Therefore, little is known on the general typology and distribution of plant spatial patterns in drylands worldwide, and on the relative importance of biotic and abiotic factors as predictors of their variations across geographical regions and habitat types. We analyzed 115 dryland plant communities from all continents except Antarctica to: 1) investigate the general typology of spatial patterns, and 2) assess the relative importance of biotic (plant cover, frequency of facilitation, soil amelioration, height of the dominant species) and abiotic (aridity, rainfall seasonality and sand content) factors as predictors of spatial patterns (median patch size, shape of patch‐size distribution and regularity) across contrasting habitat types (shrublands and grasslands). Precipitation during the warmest period and sand content were particularly strong predictors of plant spatial patterns in grasslands and shrublands, respectively. Facilitation associated with power‐law like and irregular spatial patterns in both shrublands and grasslands, although it was mediated by different mechanisms (respectively soil ammelioration and percentage of facilitated species). The importance of biotic attributes as predictors of the shape of patch‐size distributions declined with aridity in both habitats, leading to the emergence of more regular patterns under the most arid conditions. Our results expand our knowledge about patch formation in drylands and the habitat‐dependency of their drivers. They also highlight different ways in which facilitation affects ecosystem structure through the formation of plant spatial patterns.  相似文献   
922.
While modelling habitat suitability and species distribution, ecologists must deal with issues related to the spatial resolution of species occurrence and environmental data. Indeed, given that the spatial resolution of species and environmental datasets range from centimeters to hundreds of kilometers, it underlines the importance of choosing the optimal combination of resolutions to achieve the highest possible modelling prediction accuracy. We evaluated how the spatial resolution of land cover/waterbody datasets (meters to 1 km) affect waterbird habitat suitability models based on atlas data (grid cell of 12 × 11 km). We hypothesized that the area, perimeter and number of waterbodies computed from high resolution datasets would explain distributions of waterbirds better because coarse resolution datasets omit small waterbodies affecting species occurrence. Specifically, we investigated which spatial resolution of waterbodies better explain the distribution of seven waterbirds nesting on ponds/lakes with areas ranging from 0.1 ha to hundreds of hectares. Our results show that the area and perimeter of waterbodies derived from high resolution datasets (raster data with 30 m resolution, vector data corresponding with map scale 1:10 000) explain the distribution of the waterbirds better than those calculated using less accurate datasets despite the coarse grain of the species data. Taking into account the spatial extent (global vs regional) of the datasets, we found the Global Inland Waterbody Dataset to be the most suitable for modelling distribution of waterbirds. In general, we recommend using land cover data of a resolution sufficient to capture the smallest patches of the habitat suitable for a given species’ presence for both fine and coarse grain habitat suitability and distribution modelling.  相似文献   
923.
The spatial scale at which climate and species’ occupancy data are gathered, and the resolution at which ecological models are run, can strongly influence predictions of species performance and distributions. Running model simulations at coarse rather than fine spatial resolutions, for example, can determine if a model accurately predicts the distribution of a species. The impacts of spatial scale on a model's accuracy are particularly pronounced across mountainous terrain. Understanding how these discrepancies arise requires a modelling approach in which the underlying processes that determine a species’ distribution are explicitly described. Here we use a process‐based model to explore how spatial resolution, topography and behaviour alter predictions of a species thermal niche, which in turn constrains its survival and geographic distribution. The model incorporates biophysical equations to predict the operative temperature (Te), thermal‐dependent performance and survival of a typical insect, with a complex life‐cycle, in its microclimate. We run this model with geographic data from a mountainous terrain in South Africa using climate data at three spatial resolutions. We also explore how behavioural thermoregulation affects predictions of a species performance and survival by allowing the animal to select the optimum thermal location within each coarse‐grid cell. At the regional level, coarse‐resolution models predicted lower Te at low elevations and higher Te at high elevations than models run at fine‐resolutions. These differences were more prominent on steep, north‐facing slopes. The discrepancies in Te in turn affected estimates of the species thermal niche. The modelling framework revealed how spatial resolution and topography influence predictions of species distribution models, including the potential impacts of climate change. These systematic biases must be accounted for when interpreting the outputs of future modelling studies, particularly when species distributions are predicted to shift from uniform to topographically heterogeneous landscapes.  相似文献   
924.
Group travel is a familiar phenomenon among birds but the causes of this mode of movement are often unclear. For example, flocking flight may reduce flight costs, enhance predator avoidance or increase foraging efficiency. In addition, naive individuals may also follow older, more experienced conspecifics as a learning strategy. However, younger birds may be slower than adults so biomechanical and social effects on flock structure may be difficult to separate. Gannets are wide‐ranging (100s–1000s km) colonial seabirds that often travel in V or echelon‐shaped flocks. Tracking suggests that breeding gannets use memory to return repeatedly to prey patches 10s–100s km wide but it is unclear how these are initially discovered. Public information gained at the colony or by following conspecifics has been hypothesised to play a role, especially during early life. Here, we address two hypotheses: 1) flocking reduces flight costs and 2) young gannets follow older ones in order to locate prey. To do so, we recorded flocks of northern gannets commuting to and from a large colony and passing locations offshore and used a biomechanical model to test for age differences in flight speeds. Consistent with the aerodynamic hypothesis, returning flocks were significantly larger than departing flocks, while, consistent with the information gathering hypothesis, immatures travelled in flocks more frequently than adults and these flocks were more likely to be led by adults than expected by chance. Immatures did not systematically occupy the last position in flocks and had similar theoretical airspeeds to adults, making it unlikely that they follow, rather than lead, for biomechanical reasons. We therefore conclude that while gannets are likely to travel in flocks in part to reduce flight costs, the positions of immatures in those flocks may result in a flow of information from adults to immatures, potentially leading to social learning.  相似文献   
925.
In this work, the transport behaviors of the enantiomers of lactic acid (LA) in two cyclic peptide nanotubes (CPNTs) with different diameters were studied using steered molecular dynamic (SMD) simulation to investigate the effect of the diameter of CPNT on the discrimination of the enantiomers of LA. For this purpose, two cyclic peptides with two different sizes ([Ala-D-Ala-L]5 and [Ala-D-Ala-L]4) were used for constructing two CPNTs so that each CPNT was composed of eight cyclic peptide units. The docking calculations were performed to obtain the appropriate position of each enantiomer at the lumen of each CPNT. The variation of the pulling force versus time, exerted on the enantiomers moving in the CPNTs was calculated using the SMD simulations with two different strategies (positional and directional).The obtained results showed that the diameter of CPNT has considerable effect on the discrimination of the LA enantiomers so that the increase of the diameter of CPNT, increased the velocity difference between two enantiomers and improved the performance of CPNT for the chirality discrimination. The SMD simulations indicated that the velocity of S-enantiomer became more than R-enantiomer and its motion became more comfortable than R-enantiomer when the diameter of CNPT increased. The RDFs of the H and O atoms of the LA enantiomers relative to the O atoms of CPNT were calculated and it was found that the increase of the diameter of CPNT creates the significant changes in the RDFs of H1, H2 and H3 atoms of the enantiomers.  相似文献   
926.
Many biotic interactions influence community structure, yet most distribution models for plants have focused on plant competition or used only abiotic variables to predict plant abundance. Furthermore, biotic interactions are commonly context‐dependent across abiotic gradients. For example, plant–plant interactions can grade from competition to facilitation over temperature gradients. We used a hierarchical Bayesian framework to predict the abundances of 12 plant species across a mountain landscape and test hypotheses on the context‐dependency of biotic interactions over abiotic gradients. We combined field‐based estimates of six biotic interactions (foliar herbivory and pathogen damage, fungal root colonization, fossorial mammal disturbance, plant cover and plant diversity) with abiotic data on climate and soil depth, nutrients and moisture. All biotic interactions were significantly context‐dependent along temperature gradients. Results supported the stress gradient hypothesis: as abiotic stress increased, the strength or direction of the relationship between biotic variables and plant abundance generally switched from negative (suggesting suppressed plant abundance) to positive (suggesting facilitation/mutualism). For half of the species, plant cover was the best predictor of abundance, suggesting that the prior focus on plant–plant interactions is well‐justified. Explicitly incorporating the context‐dependency of biotic interactions generated novel hypotheses about drivers of plant abundance across abiotic gradients and may improve the accuracy of niche models.  相似文献   
927.
An microRNA (miRNA) signature to predict the clinical outcome of pancreatic adenocarcinoma (PAAD) is still lacking. In the current study, we aimed at identifying and evaluating a prognostic miRNA signature for patients with PAAD. The miRNA expression profile and the clinical information regarding patients with PAAD were recruited from The Cancer Genome Atlas database. Differentially expressed miRNAs were identified between normal and tumor samples. By means of survival analysis, a 4-miRNA signature for predicting patients' with PAAD overall survival (OS) was constructed. Receiver operating characteristic (ROC) analysis was applied to determine the efficiency of survival prediction. Furthermore, the biological function of the predicted miRNAs was evaluated using a bioinformatics approach. Four (hsa-mir-126, hsa-mir-3613, hsa-mir-424, and hsa-mir-4772) out of 17 differentially expressed miRNAs were associated to the OS of patients with PAAD. Moreover, the area under the curve (AUC) of the constructed 4-miRNA signature associated to patients' with PAAD 2-year survival was 0.789. The multivariate Cox's proportional hazards regression model suggested that this 4-miRNA signature was an independent prognostic factor of other clinical parameters in patients with PAAD. Further pathway enrichment analyses revealed that the miRNAs in the 4-miRNA signature might regulate genes that affect focal adhesion, Wnt signaling pathway, and PI3K-Akt signaling pathway. Thus, these findings indicated that the 4-miRNA signature might be an effective independent prognostic biomarker in the prediction of PAAD patients' survival.  相似文献   
928.
Climate change will redistribute the global biodiversity in the Anthropocene. As climates change, species might move from one place to another, due to local extinctions and colonization of new environments. However, the existence of permeable migratory routes precedes faunal migrations in fragmented landscapes. Here, we investigate how dispersal will affect the outcome of climate change on the distribution of Amazon's primate species. We modeled the distribution of 80 Amazon primate species, using ecological niche models, and projected their potential distribution on scenarios of climate change. Then, we imposed landscape restrictions to primate dispersal, derived from a natural biogeographical barrier to primates (the main tributaries of the Amazon river) and an anthropogenic constraint to the migration of many canopy‐dependent animals (deforested areas). We also highlighted potential conflict zones, i.e. regions of high migration potential but predicted to be deforested. Species response to climate change varied across dispersal limitation scenarios. If species could occupy all newly suitable climate, almost 70% of species could expand ranges. Including dispersal barriers (natural and anthropogenic), however, led to range expansion in only less than 20% of the studied species. When species were not allowed to migrate, all of them lost an average of 90% of the suitable area, suggesting that climate may become unsuitable within their present distributions. All Amazon primate species may need to move as climate changes to avoid deleterious effects of exposure to non‐analog climates. The effect of climate change on the distribution of Amazon primates will ultimately depend on whether landscape permeability will allow climate‐driven faunal migrations. The network of protected areas in the Amazon could work as ‘stepping stones’ but most are outside important migratory routes. Therefore, protecting important dispersal corridors is foremost to allow effective migrations of the Amazon fauna in face of climate change and deforestation.  相似文献   
929.
Population distributions are affected by a variety of spatial processes, including dispersal, intraspecific dynamics and habitat selection. Within reef‐building coral communities, these processes are especially important during the earliest life stages when reproduction provides mobility among sessile organisms and populations experience the greatest mortality bottlenecks both before and immediately after settlement. Here, we used large‐area imaging to create photomosaics that allowed us to identify and map the location of 4681 juvenile (1–5 cm diameter) and 25 902 adult (>5 cm diameter) coral colonies from eight 100‐m2 plots across the forereef of Palmyra Atoll. Using metrics of density, percent cover and the relative location of each colony within each plot, we examined abundance and spatial relationships between juvenile and adult coral taxa. Within coral taxa, juvenile density was generally positively related to the numerical density and percent cover of adults. Nearest neighbor analyses showed aggregation of juveniles near adults of the same taxon for two of the focal taxa (Pocillopora and Fungiids), while all other taxa showed random spatial patterning relative to adults. Three taxa had clustered distributions of juveniles overall. Additionally, we found that on a colony level, juveniles for five of nine focal taxa (accounting for >98% of all identified juveniles) associated with a specific habitat type, with four of those five taxa favoring unconsolidated (e.g. rubble) over consolidated substrata. The general lack of clustering in juvenile corals contrasts with consistent clustering patterns seen in adult corals, suggesting that adult spatial patterns are largely driven by processes occurring after maturity such as partial colony mortality, including fission and fragmentation. The association of many taxa with unconsolidated habitat also suggests that corals may play an important role in colonizing natural rubble patches that could contribute to reef stabilization over time.  相似文献   
930.
Pediatric liver disease (PLD) is a major cause of severe morbidity and prolonged hospitalizations in children. Stratifying patients in terms of prognosis remains challenging. The limited knowledge about molecular mechanisms causing and accompanying PLD remains the main obstacle in a search for reliable prognostic biomarkers. A systematic search of MEDLINE via PubMed and Embase via OVID was conducted on studies published between August 2007 and August 2017. Molecular markers with a prognostic potential in terms of survival, need for liver transplantation or disease progression/regression were selected. In general, identified studies were single center smaller case-control studies or case series with a low level of evidence and a high risk of bias. Only 23 studies comprising 898 patients could be included, mostly focusing on biliary atresia, non-alcoholic fatty liver disease, viral hepatitis, and LT; and markers related to morphogenesis and fibrosis. Furthermore, molecular markers in metabolic pathways and inflammation shown to be relevant, however requiring further validation. Hence, further biological and clinical studies are needed to gain greater molecular insight into PLD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号