首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5952篇
  免费   701篇
  国内免费   1742篇
  2024年   56篇
  2023年   191篇
  2022年   257篇
  2021年   312篇
  2020年   377篇
  2019年   422篇
  2018年   338篇
  2017年   351篇
  2016年   347篇
  2015年   316篇
  2014年   388篇
  2013年   386篇
  2012年   310篇
  2011年   329篇
  2010年   290篇
  2009年   351篇
  2008年   365篇
  2007年   351篇
  2006年   327篇
  2005年   270篇
  2004年   265篇
  2003年   243篇
  2002年   202篇
  2001年   168篇
  2000年   161篇
  1999年   121篇
  1998年   108篇
  1997年   89篇
  1996年   74篇
  1995年   97篇
  1994年   61篇
  1993年   53篇
  1992年   48篇
  1991年   45篇
  1990年   36篇
  1989年   31篇
  1988年   35篇
  1987年   33篇
  1986年   21篇
  1985年   26篇
  1984年   31篇
  1983年   11篇
  1982年   24篇
  1981年   8篇
  1980年   13篇
  1979年   11篇
  1978年   9篇
  1976年   15篇
  1975年   6篇
  1973年   6篇
排序方式: 共有8395条查询结果,搜索用时 93 毫秒
991.
Worldwide there is a rush toward wind power development and its associated infrastructure. In Fennoscandia, large‐scale wind farms comprising several hundred windmills are currently built in important grazing ranges used for Sámi reindeer husbandry. In this study, reindeer habitat use was assessed using reindeer fecal pellet group counts in relation to two relatively small wind farms, with 8 and 10 turbines, respectively. In 2009, 1,315 15‐m2 plots were established and pellet groups were counted and cleaned from the plots. This was repeated once a year in May, during preconstruction, construction, and operation of the wind farms, covering 6 years (2009–2014) of reindeer habitat use in the area. We modeled the presence/absence of any pellets in a plot at both the local (wind farm site) and regional (reindeer calving to autumn range) scale with a hierarchical logistic regression, where spatial correlation was accounted for via random effects, using vegetation type, and the interaction between distance to wind turbine and time period as predictor variables. Our results revealed an absolute reduction in pellet groups by 66% and 86% around each wind farm, respectively, at local scale and by 61% at regional scale during the operation phase compared to the preconstruction phase. At the regional, scale habitat use declined close to the turbines in the same comparison. However, at the local scale, we observed increased habitat use close to the wind turbines at one of the wind farms during the operation phase. This may be explained by continued use of an important migration route close to the wind farm. The reduced use at the regional scale nevertheless suggests that there may be an overall avoidance of both wind farms during operation, but further studies of reindeer movement and behavior are needed to gain a better understanding of the mechanisms behind this suggested avoidance.  相似文献   
992.
Understanding population dynamics requires reliable estimates of population density, yet this basic information is often surprisingly difficult to obtain. With rare or difficult‐to‐capture species, genetic surveys from noninvasive collection of hair or scat has proved cost‐efficient for estimating densities. Here, we explored whether noninvasive genetic sampling (NGS) also offers promise for sampling a relatively common species, the snowshoe hare (Lepus americanus Erxleben, 1777), in comparison with traditional live trapping. We optimized a protocol for single‐session NGS sampling of hares. We compared spatial capture–recapture population estimates from live trapping to estimates derived from NGS, and assessed NGS costs. NGS provided population estimates similar to those derived from live trapping, but a higher density of sampling plots was required for NGS. The optimal NGS protocol for our study entailed deploying 160 sampling plots for 4 days and genotyping one pellet per plot. NGS laboratory costs ranged from approximately $670 to $3000 USD per field site. While live trapping does not incur laboratory costs, its field costs can be considerably higher than for NGS, especially when study sites are difficult to access. We conclude that NGS can work for common species, but that it will require field and laboratory pilot testing to develop cost‐effective sampling protocols.  相似文献   
993.
Forest community structure may be influenced by seedling density dependence, however, the effect is loosely coupled with population dynamics and diversity in the short term. In the long term the strength of conspecific density dependence may fluctuate over time because of seedling abundance, yet few long‐term studies exist. Based on 11 years of seedling census data and tree census data from a 25‐ha temperate forest plot in Northeast China, we used generalized linear mixed models to test the relative effects of local neighborhood density and abiotic factors on seedling density and seedling survival. Spatial point pattern analysis was used to determine if spatial patterns of saplings and juveniles, in relation to conspecific adults, were in accordance with patterns uncovered by conspecific negative density dependence at the seedling stage. Our long‐term results showed that seedling density was mainly positively affected by conspecific density, suggesting dispersal limitation of seedling development. The probability of seedling survival significantly decreased over 1 year with increasing conspecific density, indicating conspecific negative density dependence in seedling establishment. Although there was variation in conspecific negative density dependence at the seedling stage among species and across years, a dispersed pattern of conspecific saplings relative to conspecific adults at the local scale (<10 m) was observed in four of the 11 species examined. Overall, sapling spatial patterns were consistent with the impacts of conspecific density on seedling dynamics, which suggests that conspecific negative density dependence is persistent over the long term. From the long‐term perspective, conspecific density dependence is an important driver of species coexistence in temperate forests.  相似文献   
994.
Animals exhibit diverse dispersal strategies, including sex‐biased dispersal, a phenomenon common in vertebrates. Dispersal influences the genetic structure of populations as well as geographic variation in phenotypic traits. Patterns of spatial genetic structure and geographic variation may vary between the sexes whenever males and females exhibit different dispersal behaviors. Here, we examine dispersal, spatial genetic structure, and spatial acoustic structure in Rufous‐and‐white Wrens, a year‐round resident tropical bird. Both sexes sing in this species, allowing us to compare acoustic variation between males and females and examine the relationship between dispersal and song sharing for both sexes. Using a long‐term dataset collected over an 11‐year period, we used banding data and molecular genetic analyses to quantify natal and breeding dispersal distance in Rufous‐and‐white Wrens. We quantified song sharing and examined whether sharing varied with dispersal distance, for both males and females. Observational data and molecular genetic analyses indicate that dispersal is female‐biased. Females dispersed farther from natal territories than males, and more often between breeding territories than males. Furthermore, females showed no significant spatial genetic structure, consistent with expectations, whereas males showed significant spatial genetic structure. Overall, natal dispersal appears to have more influence than breeding dispersal on spatial genetic structure and spatial acoustic structure, given that the majority of breeding dispersal events resulted in individuals moving only short distances. Song sharing between pairs of same‐sex animals decreases with the distance between their territories for both males and females, although males exhibited significantly greater song sharing than females. Lastly, we measured the relationship between natal dispersal distance and song sharing. We found that sons shared fewer songs with their fathers the farther they dispersed from their natal territories, but that song sharing between daughters and mothers was not significantly correlated with natal dispersal distance. Our results reveal cultural differences between the sexes, suggesting a relationship between culture and sex‐biased dispersal.  相似文献   
995.
Freshwater ecosystems are the most threatened ecosystems worldwide. Argentinian‐protected areas have been established mainly to protect vertebrates and plants in terrestrial ecosystems. In order to create a comprehensive biodiverse conservation plan, it is crucial to integrate both aquatic and terrestrial systems and to include macroinvertebrates. Here, we address this topic by proposing priority areas of conservation including invertebrates, aquatic ecosystems, and their connectivity and land uses. Location: Northwest of Argentina. We modeled the ecological niches of different taxa of macroinvertebrates such as Coleoptera, Ephemeroptera, Hemiptera, Megaloptera, Lepidoptera, Odonata, Plecoptera, Trichoptera, Acari, and Mollusca. Based on these models, we analyzed the contribution of currently established protected areas in the conservation of the aquatic biodiversity and we propose a spatial prioritization taking into account possible conflict regarding different land uses. Our analysis units were the real watersheds, to which were added longitudinal connectivity up and down the rivers. A total of 132 species were modeled in the priority area analyses. The analysis 1 showed that only an insignificant percentage of the macroinvertebrates distribution is within the protected areas in the North West of Argentina. The analyses 2 and 3 recovered similar values of protection for the macroinvertebrate species. The upper part of Bermejo, Salí‐Dulce, San Francisco, and the Upper part of Juramento basins were identified as priority areas of conservation. The aquatic ecosystems need special protection and 10% or even as much as 17% of land conservation is insufficient for species of macroinvertebrates. In turn the protected areas need to combine the aquatic and terrestrial systems and need to include macroinvertebrates as a key group to sustain the biodiversity. In many cases, the land uses are in conflict with the conservation of biodiversity; however, it is possible to apply the connectivity of the watersheds and create multiple‐use modules.  相似文献   
996.
Using the Southern African Bird Atlas Project (SABAP2) as a case study, we examine the possible determinants of spatial bias in volunteer sampling effort and how well such biased data represent environmental gradients across the area covered by the atlas. For each province in South Africa, we used generalized linear mixed models to determine the combination of variables that explain spatial variation in sampling effort (number of visits per 5′ × 5′ grid cell, or “pentad”). The explanatory variables were distance to major road and exceptional birding locations or “sampling hubs,” percentage cover of protected, urban, and cultivated area, and the climate variables mean annual precipitation, winter temperatures, and summer temperatures. Further, we used the climate variables and plant biomes to define subsets of pentads representing environmental zones across South Africa, Lesotho, and Swaziland. For each environmental zone, we quantified sampling intensity, and we assessed sampling completeness with species accumulation curves fitted to the asymptotic Lomolino model. Sampling effort was highest close to sampling hubs, major roads, urban areas, and protected areas. Cultivated area and the climate variables were less important. Further, environmental zones were not evenly represented by current data and the zones varied in the amount of sampling required representing the species that are present. SABAP2 volunteers' preferences in birding locations cause spatial bias in the dataset that should be taken into account when analyzing these data. Large parts of South Africa remain underrepresented, which may restrict the kind of ecological questions that may be addressed. However, sampling bias may be improved by directing volunteers toward undersampled regions while taking into account volunteer preferences.  相似文献   
997.
Aims Natural and anthropogenic changes in forests can have important influences on transpiration and water production. Understanding the effects of increasing disturbances, due for example to climate change and forest harvesting, requires detailed information on how forest density and structural attributes relate to transpiration. Mean annual transpiration of eucalypt forest communities is often strongly correlated with total cross-sectional sapwood area. Our aim was to test an efficient method for estimating sapwood area at 1.3 m height (SA 1.3) in a large number of trees to understand the spatial heterogeneity of tree and stand sapwood area within and between forest communities, and develop allometric relationships that predict SA 1.3 with forest inventory data. We also apply tree competition models to determine the degree to which the relationship between SA 1.3 and tree basal area at 1.3 m height (BA 1.3) is influenced by competition.Methods We visited 25 recently harvested southeastern Australian forest sites consisting of 1379 trees and 5 Eucalyptus species to evaluate a new efficient data collection method for estimating SA 1.3 with tree taper and stump dimensions data using mixed effects models. The locations of 784 stumps within one 5-ha site were accurately mapped using an unmanned aerial vehicle (UAV), and four distance-dependent tree competition models were applied across the site to explain within-stand variation in the ratio of SA 1.3 to BA 1.3. Data from 24 additional sites, consisting of ten 15 m radial plots per site, were used to analyse within-site variation in R Ha (the ratio of stand sapwood area SA Ha to stand basal area BA Ha). The radial plots were merged within each site to evaluate between-site variations in R Ha across the landscape. For predicting SA Ha with forest inventory data, we computed the relationship between SA Ha and a new index of total stem perimeter per hectare, defined as ? B A H a N T, where N T is tree stocking density.Important findings Our 1379 measured stems represent the most comprehensive measure of sapwood area, surpassing the 757 measured stems in native eucalypt forests published in literature. The species-specific R Ha varied considerably across sites and therefore extrapolating SA Ha with spatially distributed BA Ha maps and a generalized R Ha would introduce local uncertainty. We found that the species-specific stem perimeter index was more effective at capturing variability in SA Ha across the landscape using forest composition, structure and density data (R 2 : 0.72–0.77). The strong correlation between tree SA 1.3 and BA 1.3 improved slightly using tree competition models (R 2 increased from 0.86 to 0.88). Relating SA Ha to routinely measured forest inventory attributes within permanent plots and Light Detection and Ranging (LiDAR) data may provide opportunities to map forest water use in time and space across large areas disturbed by wildfire and logging.  相似文献   
998.
珲春国家级自然保护区是东北虎(Panthera tigris altaica)、东北豹(Panthera pardus orientalis)等濒危物种在中国的核心分布区。为了探究该区域野生动物的多度水平和空间分布, 了解人类干扰情况, 我们运用相对多度指数(relative abundance index, RAI)分析了2013年4-6月设置于此的83个红外相机位点的监测数据。红外相机的总捕获天数6,060 d, 共捕获10科18种野生哺乳动物, 其中鼬科4种, 猫科动物3种, 犬科、鹿科和松鼠科各2种, 猪科、熊科、麝科、猬科和兔科各1种。研究期间共拍摄到东北虎11只个体, 东北豹13只个体。从相对多度指数来看, 东北虎的相对多度(0.84)远高于东北豹(0.48), 它们的有蹄类猎物中梅花鹿(Cervus nippon)的相对多度最高(2.18), 其次为狍(Capreolus pygargus)(1.53)和野猪(Sus scrofa)(0.92)。人类活动和放牧的相对多度水平(分别为40.64和2.76)显著高于野生动物。在空间分布上, 东北虎和梅花鹿主要在保护区的核心区分布, 且与保护区社区共管区的多度水平差异显著, 而东北豹在不同功能区之间的分布差异不显著, 狍在保护区北部的多度水平较高, 但各功能区之间差异不显著, 野猪在社区共管区的多度水平显著高于核心区。可见, 核心区频繁的人类活动和放牧活动对野生动物的保护产生了影响, 未来应加强关于人类干扰对虎、豹种群及其有蹄类猎物的影响评估。  相似文献   
999.
Partitioning of 14C-labelled photosynthates to various parts of un-pruned tea clones TV1 and TV25 was assessed in vivo by exposing maintenance leaves to 14CO2 at monthly intervals throughout the year. The plants from shoot apex to root tip were divided into twelve components to assess the allocation and retention of 14C-photosynthates by the maintenance foliage. Out of the total photosynthates produced by the maintenance leaves, only 11.08 % was allocated to the commercially useful harvestable two and a bud shoots which is accepted as the harvest index of tea. The photosynthetically active maintenance leaves retained 19.05 % while 24.56 % was distributed to the branches. The bottom and the top parts of the trunk utilized 7.44 and 7.21 %, respectively. The thick roots at the base of the trunk, medium sized roots, pencil size roots, and feeder roots imported 7.28, 7.72, 7.65, and 8.01 % of 14C assimilates, respectively. Except retention by leaves, all the plant parts of vigorous clone TV25 required higher percentage of assimilates than TV1. The mean quantities of net photosynthates utilized by the stem and the roots were 69.37 and 30.63 %, respectively.  相似文献   
1000.
Patterns of endemism of the eastern North American cave fauna   总被引:5,自引:0,他引:5  
Aim Over 250 species of obligate terrestrial cave‐dwelling animals (troglobionts) are known from single caves in the eastern United States. We investigate their geographical distribution, especially in relation to other troglobionts. We relate these patterns to taxonomic group, opportunities for dispersal and geographical location. Location Caves of the United States east of the Mississippi River. Methods We associated over 3000 records of more than 450 troglobiotic species and subspecies with hexagons of 1000, 5000 and 10,000 km2 in size. We calculated Moran's I, black–white joins and cubic regression of endemics on non‐endemics at all three spatial scales. For 5000 km2 hexagons, we modelled the spatial autocorrelation of the residuals of the cubic regression of endemics on non‐endemics. Results Differences among orders in percentage single‐cave endemism were not significant, except for Pseudoscorpionida, which was higher (69%) than any other order. At all three scales, Moran's I and black–white joins were significant, indicating a clumped distribution of both single‐cave endemics and other troglobionts. Spatial patterns were similar at all three scales and Moran's I was highest at 5000 km2. The cubic fit of endemics to non‐endemics was consistently better, with less systematic error or residuals, than were linear or quadratic models. Residuals showed a significant geographical pattern with excess endemics in more southerly locations. Main conclusions There was both a non‐spatial and spatial component to the pattern of single‐cave endemism. The non‐spatial component was the association of high levels of single‐cave endemism with areas of high diversity of non‐endemics. It may be that both are high because of high secondary productivity. Spatially, single‐cave endemism is high in central rather than peripheral areas and in the southern part of the range. It is not higher in areas of more dissected limestone, which would reduce migration rates; if anything endemism is lower. Regional spatial effects are important, indicating that cave communities cannot be understood (or protected) in isolation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号