首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1971篇
  免费   103篇
  国内免费   206篇
  2023年   34篇
  2022年   30篇
  2021年   41篇
  2020年   50篇
  2019年   39篇
  2018年   46篇
  2017年   49篇
  2016年   61篇
  2015年   60篇
  2014年   56篇
  2013年   165篇
  2012年   60篇
  2011年   65篇
  2010年   65篇
  2009年   59篇
  2008年   72篇
  2007年   56篇
  2006年   75篇
  2005年   70篇
  2004年   55篇
  2003年   75篇
  2002年   61篇
  2001年   53篇
  2000年   45篇
  1999年   42篇
  1998年   40篇
  1997年   55篇
  1996年   44篇
  1995年   46篇
  1994年   48篇
  1993年   55篇
  1992年   51篇
  1991年   65篇
  1990年   42篇
  1989年   39篇
  1988年   47篇
  1987年   35篇
  1986年   34篇
  1985年   28篇
  1984年   38篇
  1983年   13篇
  1982年   21篇
  1981年   15篇
  1980年   17篇
  1979年   13篇
  1978年   13篇
  1977年   7篇
  1976年   11篇
  1975年   6篇
  1973年   6篇
排序方式: 共有2280条查询结果,搜索用时 0 毫秒
31.
Irreversible inhibition of soybean lipoxygenase-1 (SL-1) was accomplished via a controlled potential oxidative electrolysis of 1,5-dihydroxynaphthalene (1,5-DHN) at +0.8 V vs SCE. The inactivation of SL-1 with this known inhibitor was greatly enhanced under these electrolytic conditions to which the enzyme itself was stable. Electrolyses were run at 0 degree C in a 0.05 M phosphate buffer, pH 7.0, using graphite cloth electrodes. The rate of inactivation was observed to be limited by and dependent on the anodic oxidation of 1,5-DHN. The non-oxidizable (at this potential) inhibitor indomethacin was shown to protect the enzyme from irreversible inactivation, however, an external nucleophile (2-mercaptoethanol) had little effect. These initial studies support the capability of such electrochemical methods for the site-specific covalent modification (affinity labelling) of lipoxygenase, and perhaps other enzymes.  相似文献   
32.
Summary Plants have been regenerated from nodular, green callus derived from cotyledon, petiole and leaf lamina explants ofG. argyrea, a perennial relative of the soybean (G. max). The degree of response obtained was governed primarily by the genotype used, accession G1626 proving the most responsive. Shoots were also recovered from about 6.0% of cotyledon protoplasts of this genotype. The implications of these results are discussed in relation to genetic manipulations using this species.  相似文献   
33.
Mature soybean cotyledons (Maturity group VII) were cultured on modified MS containing 0–2.5 μM indole-butyric acid (IBA); 0–10 μM 6-benzylaminopurine (BAP) and 0.7% agar. Embryonic axes of explants were removed prior to culture initiation and cultures were incubated at 24°C with 45–50 μE. s−1.M−2 of mixed irradiance with 16 h photoperiod. Shoot proliferation occurred at 0–2.5 μM IBA and 5–10 μM BAP, while in the presence of 2.5 μM IBA alone, only roots developed. Abnormal shoots were produced with 2.5 μM IBA and 5–7.5 μM thidiazuron. Adventitious shoot development started 7–14 d after culture initiation in the region where the embryonic axis was previously attached to the cotyledon and shoots were visible within 28 days. The presence of the embryonic axis inhibited shoot morphogenesis. The shoots were rooted on half strength MS inorganic salts plus vitamins, 2% sucrose, 0.5 μM NAA acid or 2.5–5 μM IBA, or 5–10 μM IAA, and 0.7% agar. Rooted plants were acclimatized under a mist in the greenhouse. This simple, rapid,in vitro adventitious shoot development protocol could be adapted for transformation/regeneration studies in soybean. Trade and company names are used in the publication solely to provide specific information. Mention of a trade or company name does not constitute a warranty or an endorsement by the U.S. Department of Agriculture to the exclusion of other products or organizations not mentioned.  相似文献   
34.
聚乙二醇处理的大豆种子的异柠檬酸裂解酶、苹果酸脱氢酶、过氧化氢酶、超氧物歧化酶、酸性磷酸酶、碱性磷酸酶的活性明显高于受低温吸胀冷害的种子子叶的活性,相关的酶活性协同地增长,而蛋白质的含量没有明显的变化。这些酶活性的提高可能是渗透调控处理对细胞膜系统修补的结果。  相似文献   
35.
The interactions of Heterodera glycines at four egg inoculum levels (0, 100, 1,000, and 10,000 per pot) and three cyst levels (0, 100, and 200 per pot) and Calonectria crotalariae at 500, 5,000, and 50,000 microsclerotia per pot were evaluated on soybean. At the two lowest nematode egg levels, the presence of C. crotalariae did not affect nematode reproduction. At 10,000 eggs per pot, however, nematode reproduction was increased significantly at each microsclerotial level. The increase in nematode reproduction was stepwise at 500 and 5,000 microsclerotia per pot but declined at 50,000 microsclerotia per pot. Similar results were obtained when cysts rather than eggs were used as nematode inoculum. The nematode x fungus interaction significantly affected 60-day plant growth parameters of both Lee 74 and Centennial soybean. The nematode x fungus interaction was antagonistic to plant roots and significantly influenced root injury ratings. The presence of C. crotalariae in tissues of stock plants or plants used as race differentials did not alter the analysis of this population as race 3.  相似文献   
36.
Growth room and field experiments were conducted to determine the influence of soil temperature and soybean phenology on dormancy induction of a North Carolina population of Heterodera glycines race 1. Three temperature regimes and two photoperiods to regulate plant phenology were investigated in growth rooms. H. glycines hatch was greatest from the 26 and 22 C (day and night) temperature treatment, intermediate at 22 and 18 C, and least from the decreasing regime (26 and 22 C, 22 and 18 C, and 18 and 14 C). More eggs hatched and greater nematode reproduction occurred on pod-producing soybeans than on those that remained vegetative. In the field study, hatching patterns were not different between depodded and naturally senescing soybeans nor between the different maturity groups of soybean cultivars (groups V through VIII). Egg hatch (9-16%) was greatest in August and September when mean soil temperatures were between 25 and 29 C. Hatch declined to 1% in vitro and was not detectable in the bioassay in November. Greatest nematode numbers were observed on the latest maturing cultivar (group VIII) and fewest on the cultivar which matured earliest (group V). Decreasing temperature appears to be more important than soybean phenology in dormancy induction of H. glycines.  相似文献   
37.
本文对不同进化类型大豆种子超氧物歧化酶(SOD)进行了比较分析。结果表明:(1)供试三种进化类型大豆种子的 SOD 同工酶酶谱一致,均为7条,其中一条为 Ma-SOD,其余6条为 Cu-Zn-SOD。(2)SOD 活性表现为:野生类型明显高于中间类型,中间类型明显高于栽培类型。(3)随着大豆籽粒百粒重的增大,种胚的 SOD 活性降低。(4)种皮颜色由黑到黄,种皮的 SOD 活性降低。讨论了大豆种子 SOD 活性与 Sofa 亚属内大豆进化的关系。  相似文献   
38.
Diamine oxidase (DAO, EC 1.4.3.6.) activity and polyamine content were measured in the shoot apex, leaves, epicotyl, cotyledons, hypocotyl and roots of light-grown bean ( Phaseolus vulgaris L. cv. Lingot) and soybean ( Glycine max L. cv. Sakai) seedlings at 3 different stages of germination (5, 8 and 14 days) as well as in embryos and cotyledons from soaked seeds. No DAO activity was detected in embryos and cotyledons of either plants. In bean seedlings DAO activity was only detectable in the shoot apex, primary leaves and cotyledons, while in soybean the activity was only detectable in the hypocotyl and roots. During seedling growth, in both plants, a different pattern of DAO activity was observed. In both species spermidine and spermine were the most abundant polyamines in embryos and cotyledons. Cadaverine, absent in bean, was only detected in soybean embryos. In the seedlings of both plants, increasing gradients of putrescine, spermidine and spermine from base to shoot apex were found. A high concentration of cadaverine was present in soybean hypocotyls and roots. A possible correlation between DAO activity and the endogenous content of the preferential substrate is discussed in relation to the possible involvement of the enzyme in regulating the cellular level of polyamines.  相似文献   
39.
The effect of aluminium (Al) on root elongation was studied in solution culture and sand culture. Compared to solution culture, in sand culture a ten times higher Al supply was necessary to inhibit root elongation to a comparable degree. This was due to a much lower Al uptake into the 5 mm root tips in sand culture. Fe concentrations in root tips were also lower in sand culture. Ca concentrations were higher and less depressed by Al, whereas Mg and K concentrations were not affected by the culture substrate. Regressions of Al concentrations in root tips versus inhibition of root elongation by Al revealed root damage at lower Al concentrations in sand culture. The effect of culture substrate on Al tolerance was independent of N source and could also be shown in flowing solution culture with and without sand. The results indicate that mechanical impedance in sand culture decreased Al uptake. This may be due to enhanced exudation of organic complexors thus reducing activites of monomeric Al species.  相似文献   
40.
Abstract. The effect of atmospheric humidity on the kinetics of stomatal responses was quantified in gas exchange experiments using sugarcane ( Saccharum spp. hybrid) and soybean ( Glycine max ). Pulses of blue light were used to elicit pulses of stomatal conductance that were mediated by the specific blue light response of guard cells. Kinetic parameters of the conductance response were more closely related to leaf-air vapour pressure difference (VPD) than to relative humidity or transpiration. Increasing VPD significantly accelerated stomatal opening in both sugarcane and soybean, despite an approximately five-fold faster response in sugarcane. In contrast, the kinetics of stomatal recovery (closure) following the pulse were similar in the two species. Acceleration of opening by high VPD was observed even under conditions where soybean exhibited a feedforward response of decreasing transpiration (E) with increasing evaporative demand (VPD). This result suggests that epidermal, rather than bulk leaf, water status mediates the VPD effect on stomatal kinetics. The data are consistent with the hypothesis that increased cpidermal water loss at high VPD decreases the backpressure exerted by neighbouring cells on guard cells. allowing more rapid stomatal opening per unit of guard cell metabolic response to blue light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号