首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1861篇
  免费   99篇
  国内免费   205篇
  2023年   33篇
  2022年   32篇
  2021年   39篇
  2020年   47篇
  2019年   38篇
  2018年   45篇
  2017年   48篇
  2016年   55篇
  2015年   59篇
  2014年   54篇
  2013年   146篇
  2012年   54篇
  2011年   62篇
  2010年   62篇
  2009年   55篇
  2008年   70篇
  2007年   50篇
  2006年   67篇
  2005年   68篇
  2004年   53篇
  2003年   74篇
  2002年   58篇
  2001年   52篇
  2000年   44篇
  1999年   42篇
  1998年   38篇
  1997年   53篇
  1996年   43篇
  1995年   46篇
  1994年   46篇
  1993年   55篇
  1992年   51篇
  1991年   64篇
  1990年   42篇
  1989年   39篇
  1988年   47篇
  1987年   35篇
  1986年   34篇
  1985年   26篇
  1984年   36篇
  1983年   12篇
  1982年   20篇
  1981年   13篇
  1980年   13篇
  1979年   9篇
  1978年   10篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
  1973年   2篇
排序方式: 共有2165条查询结果,搜索用时 31 毫秒
101.
大豆是重要的粮食作物和经济作物,其籽粒蛋白约为40%,是植物蛋白的重要来源之一。国产大豆主要用于食用,提高大豆蛋白含量是主要的育种目标。因此,发掘大豆蛋白含量相关基因,对开发分子标记并培育高蛋白食用大豆具有重要意义。本研究以低蛋白大豆品种中黄35为母本,以源自日本的高蛋白大豆十胜长叶为父本,构建了重组自交系(RIL,recombination inbred lines)群体。利用集群分离分析法(BSA,bulked segregant analysis)在3条染色体筛选出9个与蛋白含量相关的SSR标记,其中位于19号染色体的QTL尚未见报道。进一步利用完备区间作图法(ICIM-ADD)分析RIL群体F2:15和F2:16,在19号染色体重复定位了1个蛋白质含量相关QTL qPRO-19-1,位于分子标记SSR_19_38和SSR_19_59之间,LOD值分别为3.43和3.98,贡献率分别为7.81%和14.87%,高蛋白等位基因来自于高蛋白亲本十胜长叶。qPRO-19-1的定位区间长度为385 kb,共有注释基因36个。本研究定位了蛋白质含量相关的新位点qPRO-19-1,为大豆高蛋白基因的图位克隆及分子标记育种奠定了基础。  相似文献   
102.
转基因大豆是目前种植最广泛的转基因作物之一,其中具有耐除草剂特性的转基因大豆占比最高。公众对转基因食品一直争议不断,因此,其批准商业化种植前的食用安全性评价显得尤为重要。已有研究显示,转基因耐除草剂大豆已经商业化种植了二十多年,迄今为止还没有观察到任何不良反应。目前已经批准的转基因耐除草剂大豆均进行了严格的毒理学评价、过敏性评价和营养学评价,经过严格评价后上市的转基因大豆可以放心食用。综述了转基因耐除草剂大豆的主要类型,分析了可能存在的安全性问题,对转基因耐除草剂大豆的食用安全性评价方法进行了总结,以期为后续相关转基因食品安全性评价工作的开展提供借鉴。  相似文献   
103.
Abstract

Aspergillus flavus has been regarded as a potential candidate for its production of industrial enzymes, but the details of β-glucosidase from this strain is very limited. In herein, we first reported a novel β-glucosidase (AfBglA) with the molecular mass of 94.2?kDa from A. flavus. AfBglA was optimally active at pH 4.5 and 60?°C and is stable between pH 3.5 and 9.0 and at a temperature of up to 55?°C for 30?min remaining more than 90% of its initial activity. It showed an excellent tolerance to Trypsin, Pepsin, Compound Protease, and Flavourzyme and its activity was not inhibited by specific certain cations. AfBglA displayed broad substrate specificity, it acted on all tested pNP-glycosides and barley glucan, indicating this novel β-glucosidase exhibited a β-1, 3-1, 4-glucanase activity. Moreover, the AfBglA could effectively hydrolyze the soybean meal suspension into glucose and exhibit a strong tolerance to the inhibition of glucose at a concentration of 20.0?g/L during the saccharification. The maximum amount of the glucose obtained by AfBglA corresponded to 67.0?g/kg soybean meal. All of these properties mentioned above indicated that the AfBglA possibly attractive for food and feed industry and saccharification of cellulolytic materials.  相似文献   
104.
《Free radical research》2013,47(4-5):303-312
The effect of a variety of proteins and amino acids was investigated on oxygen free radical activity as assessed by copper/hydrogen peroxide induced benzoate hydroxylation as well as copper-catalysed ascor-bate autoxidation. Serum albumins from a variety of species (human, bovine and dog) had both inhibitory and stimulatory effects depending on the molar copper to protein ratio; low ratios were inhibitory and high stimulatory. Some other proteins tested (lysozyme, soybean trypsin inhibitor and conalbumin) also had dual (inhibitory and stimulatory) effects, as did both histidine and polyhistidine, but all effects occurred at different molar ratios presumably dependent on the relative affinities for the copper ions. In contrast, metallolhioncin and cacruloplasmin, proteins specialised to bind copper in vivo had no stimulatory effects. In this paper we show that in addition to their fairly well documented inhibitory effects, under certain conditions some proteins also stimulate radical reactions. The possible role of this phenomenon in vivo is discussed.  相似文献   
105.
Environmental adaptation of crops is essential for reliable agricultural production and an important breeding objective. Genebanks provide genetic variation for the improvement of modern varieties, but the selection of suitable germplasm is frequently impeded by incomplete phenotypic data. We address this bottleneck by combining a Focused Identification of Germplasm Strategy (FIGS) with core collection methodology to select soybean (Glycine max) germplasm for Central European breeding from a collection of >17,000 accessions. By focussing on adaptation to high-latitude cold regions, we selected an “environmental precore” of 3,663 accessions using environmental data and compared the Donor opulation of Environments (DPE) in Asia and the Target Population of Environments (TPE) in Central Europe in the present and 2070. Using single nucleotide polymorphisms, we reduced the precore into two diverse core collections of 183 and 366 accessions to serve as diversity panels for evaluation in the TPE. Genetic differentiation between precore and non-precore accessions revealed genomic regions that control maturity, and novel candidate loci for environmental adaptation, demonstrating the potential of diversity panels for studying adaptation. Objective-driven core collections have the potential to increase germplasm utilization for abiotic adaptation by breeding for a rapidly changing climate, or de novo adaptation of crops to expand cultivation ranges.  相似文献   
106.
107.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   
108.
109.
Potentials toward genetic engineering of drought-tolerant soybean   总被引:1,自引:0,他引:1  
Soybean (Glycine max) is one of the most important crops in legume family. Soybean and soybean-based products are also considered as popular food for human and animal husbandry. With its high oil content, soybean has become a potential resource for the production of renewable fuel. However, soybean is considered one of the most drought-sensitive crops, with approximately 40% reduction of the yield in the worst years. Recent research progresses in elucidation of biochemical, morphological and physiological responses as well as molecular mechanisms of plant adaptation to drought stress in model plants have provided a solid foundation for translational genomics of soybean toward drought tolerance. In this review, we will summarize the recent advances in development of drought-tolerant soybean cultivars by gene transfer.  相似文献   
110.
The soybean cyst nematode (SCN), Heterodera glycines, can cause significant reductions in soybean yield and quality in many parts of the world. Natural biological control may play an important role in regulating SCN population. In this study the bacterial communities associated with SCN cysts obtained from fields under different lengths of soybean monoculture were explored. Soil samples were collected in 2010 and 2011 from six fields that had been used for soybean monoculture for 2 to 41 yr. SCN population densities were determined and bacterial communities from SCN cysts were investigated by Biolog and PCR-DGGE methods. SCN population densities initially increased in the first 5 yr of soybean monoculture but then declined steeply as years of soybean monoculture increased. Catabolic diversity of bacterial communities associated with cysts tended to decline as number of years of monoculture increased. Some specific PCR-DGGE bands, mainly representing Streptomyces and Rhizobium, were obtained from the cysts collected from the long-term monoculture fields. Principal component analysis of Biolog and PCR-DGGE data revealed that bacterial communities associated with cysts could be divided into two groups: those from cysts obtained from shorter (< 8 yr) vs. longer (> 8 yr) monoculture. This research demonstrates that the composition of the bacterial communities obtained from SCN cysts changes with length of soybean monoculture; the suppressive impact of these bacterial communities to SCN is yet to be determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号