首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2241篇
  免费   345篇
  国内免费   368篇
  2024年   16篇
  2023年   75篇
  2022年   58篇
  2021年   87篇
  2020年   115篇
  2019年   135篇
  2018年   115篇
  2017年   104篇
  2016年   106篇
  2015年   136篇
  2014年   118篇
  2013年   158篇
  2012年   100篇
  2011年   76篇
  2010年   80篇
  2009年   143篇
  2008年   140篇
  2007年   125篇
  2006年   117篇
  2005年   103篇
  2004年   83篇
  2003年   70篇
  2002年   68篇
  2001年   81篇
  2000年   83篇
  1999年   64篇
  1998年   53篇
  1997年   58篇
  1996年   23篇
  1995年   32篇
  1994年   32篇
  1993年   30篇
  1992年   23篇
  1991年   25篇
  1990年   24篇
  1989年   16篇
  1988年   19篇
  1987年   8篇
  1986年   9篇
  1985年   10篇
  1984年   10篇
  1983年   2篇
  1982年   11篇
  1981年   3篇
  1980年   4篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1958年   1篇
排序方式: 共有2954条查询结果,搜索用时 15 毫秒
111.
Caatinga vegetation continues to be converted into mosaics of secondary forest stands, but the affect of this process on biodiversity has not yet been examined. We used 35 regenerating and old‐growth stands of Caatinga to examine the recovery of plant assemblages subsequent to slash‐and‐burn agriculture and cattle ranching/pasture in northeastern Brazil. Plant assemblages were contrasted in terms of community structure (stem density/basal area/species richness/diversity), functional (leaf habit/reproductive traits) and taxonomic composition. Soil attributes were also examined to infer potential drivers for cross‐habitat differences. As expected, plant assemblages clearly differed across a large set of community‐level attributes, including all trait categories relative to leaf habit and reproduction (pollination syndrome/floral color, size, type). Overall, old‐growth forest stands supported distinct and more diverse assemblages at the plot and habitat level; e.g., long‐lived tree species were almost exclusively found in old‐growth forest stands. For most attributes, plant assemblages subsequent to pasture exhibited intermediate values between those exhibited by old‐growth forest and those of agriculture‐related stands. Surprisingly, soils exhibited similar fertility‐related scores across habitats. Our results indicate that: (1) sprouting/resprouting represents an important mechanism of forest regeneration; (2) assemblage‐level attributes suggest recovery at distinct rates; (3) forest regeneration implies community‐level changes in both vegetative and reproductive functional attributes, including directional changes; (4) Caatinga is not able to completely recover in a period of 15‐yr following land abandonment; and (5) historical land use affects recovery rates and successional pathways/taxonomic trajectories. Seasonally dry tropical forests may intrinsically cover a wide range of patterns relative to successional model, recovery rates and successional pathways.  相似文献   
112.
Naturally regenerating and restored second growth forests account for over 70% of tropical forest cover and provide key ecosystem services. Understanding climate change impacts on successional trajectories of these ecosystems is critical for developing effective large‐scale forest landscape restoration (FLR) programs. Differences in environmental conditions, species composition, dynamics, and landscape context from old growth forests may exacerbate climate impacts on second growth stands. We compile data from 112 studies on the effects of natural climate variability, including warming, droughts, fires, and cyclonic storms, on demography and dynamics of second growth forest trees and identify variation in forest responses across biomes, regions, and landscapes. Across studies, drought decreases tree growth, survival, and recruitment, particularly during early succession, but the effects of temperature remain unexplored. Shifts in the frequency and severity of disturbance alter successional trajectories and increase the extent of second growth forests. Vulnerability to climate extremes is generally inversely related to long‐term exposure, which varies with historical climate and biogeography. The majority of studies, however, have been conducted in the Neotropics hindering generalization. Effects of fire and cyclonic storms often lead to positive feedbacks, increasing vulnerability to climate extremes and subsequent disturbance. Fragmentation increases forests’ vulnerability to fires, wind, and drought, while land use and other human activities influence the frequency and intensity of fire, potentially retarding succession. Comparative studies of climate effects on tropical forest succession across biogeographic regions are required to forecast the response of tropical forest landscapes to future climates and to implement effective FLR policies and programs in these landscapes.  相似文献   
113.
The persistence of species taxa within fragmented habitats is dependent on the source–sink metapopulation processes, and forest patch size and isolation are key factors. Unveiling species–patch area and/or species–patch isolation relationships may help provide crucial information for species and landscape management. In this study, relationship between forest patch size and isolation with abundance and occupancy probability of forest-dependent birds was investigated. This study was based within a coastal landscape that faces deleterious human activities such as clearing for agriculture. The study aimed to answer the question of whether the size and extent of isolation of forest patches influence abundance and/or occupancy probability of forest-specialist and generalist birds. Two bird species, namely Tiny Greenbul Phyllastrephus debilis subsp. rabai and Yellow-bellied Greenbul Chlorocichla flaviventris, were used as models. Birds were surveyed using distance sampling methods, and spatial metrics were measured from satellite imagery. Focal forest size and distance between forest patches were the most influential metrics whereby abundance and occupancy probabilities increased with increasing patch size, but were negatively influenced by increasing gaps between patches. These findings provide evidence of the existence of patch size/ isolation–occupancy relationships characterised by higher occupancy rate of large patches and distance-dependent dispersal, which decreased with increasing gaps between patches. Controlling deleterious human activities that reduce forest size should be a priority for the long-term conservation of forest-dependent birds.  相似文献   
114.
Understanding the mechanisms generating species distributions remains a challenge, especially in hyperdiverse tropical forests. We evaluated the role of rainfall variation, soil gradients and herbivory on seedling mortality, and how variation in seedling performance along these gradients contributes to habitat specialisation. In a 4‐year experiment, replicated at the two extremes of the Amazon basin, we reciprocally transplanted 4638 tree seedlings of 41 habitat‐specialist species from seven phylogenetic lineages among the three most important forest habitats of lowland Amazonia. Rainfall variation, flooding and soil gradients strongly influenced seedling mortality, whereas herbivory had negligible impact. Seedling mortality varied strongly among habitats, consistent with predictions for habitat specialists in most lineages. This suggests that seedling performance is a primary determinant of the habitat associations of adult trees across Amazonia. It further suggests that tree diversity, currently mostly harboured in terra firme forests, may be strongly impacted by the predicted climate changes in Amazonia.  相似文献   
115.
Due to deforestation, intact tropical forest areas are increasingly transformed into a mixture of remaining forest patches and human modified areas. These forest fragments suffer from edge effects, which cause changes in ecological and ecosystem processes, undermining habitat quality and the offer of ecosystem services. Even though detailed and long term studies were developed on the topic of edge effects at local scale, understanding edge effect characteristics in fragmented forests on larger scales and finding indicators for its impact is crucial for predicting habitat loss and developing management options. Here we evaluate the spatial and temporal dimensions of edge effects in large areas using remote sensing. First we executed a neighborhood pixel analysis in 11 LANDSAT Tree Cover (LTC) scenes (180 × 185 km each, 8 in the tropics and 3 in temperate forested areas) using tree cover as an indicator of habitat quality and in relation to edge distance. Second, we executed a temporal analysis of LTC in a smaller area in the Brazilian Amazon forest where one larger forest fragment (25,890 ha) became completely fragmented in 5 years. Our results show that for all 11 scenes pixel neighborhood variation of LTC is much higher in the vicinity of forest edges, becoming lower towards the forest interior. This analysis suggests a maximum distance for edge effects and can indicate the location of unaffected core areas. However, LTC patterns in relation to fragment edge distance vary according to the analyzed region, and maximum edge distance may differ according to local conditions. Our temporal analysis illustrates the change in tree cover patterns after 5 years of fragmentation, becoming on average lower close to the edge (between 50 and 100 m). Although it is still unclear which are the main causes of LTC edge variability within and between regions, LANDSAT Tree Cover could be used as an accessible and efficient discriminator of edge and interior forest habitats in fragmented landscapes, and become invaluable for deriving qualitative spatial and temporal information of ecological and ecosystem processes.  相似文献   
116.
Correlations between morphological and genetic data provide evidence to delineate species or evolutionarily significant units, which then become the units to conserve in management plans. Here, we examine the distribution and genetic differentiation of two morphotypes of short‐finned pilot whale (Globicephala macrorhynchus) in the Pacific Ocean. Mitochondrial control region sequences from 333 samples were combined with 152 previously published sequences to describe genetic variability globally and population structure in the Pacific. Although genetic variability is low, we found strong differentiation at both broad and local levels across the Pacific. Based on genetics, two types are distributed throughout the Pacific, one predominantly in the eastern Pacific and the other in the western and central Pacific. In the eastern Pacific Ocean, no correlation was found between distribution and sea surface temperature. The two types have broad latitudinal ranges, suggesting their distributions are likely driven by more complex factors, such as prey distribution, rather than sea surface temperature.  相似文献   
117.
Thirty-three angiosperm pollen species are here reported from mid-Cretaceous deposits of the Kachaike Formation, Austral Basin, southern Argentina. Clavatipollenites is the most abundant angiosperm genus, with six well-defined morphological groups recognised on the basis of their reticulum morphology and sculpture. Pollen of eudicots are scarce, represented by tricolpate (Psilatricolpites spp. and Tricolpites spp.), tricolporoidate and tricolporate morphotypes (Dryadopollis spp.). Increasing complexity in the aperture structure is seen throughout the sequence; tricolpate and tricolporoidate forms are recorded in almost all samples, while tricolporate pollen grains are restricted to the middle and upper levels of the unit. The high species richness and abundance of monocolpate-ulcerate angiosperm related to monocots or magnoliids sensu lato recorded in the unit is comparable to that previously recognised in other assemblages from the early and middle Albian of the southern (e.g. Australia) and northern hemispheres (e.g. Western Portuguese basin, Europe). The recorded increase in the number of angiosperm species towards the middle and upper parts of the Kachaike Formation, with the presence of monocolpate, tricolpate, tricolporoidate and tricolporate pollen, suggests an early-early middle Albian age for these parts of the unit, in agreement with the early Albian age proposed for its basal levels on the basis of dinoflagellates.  相似文献   
118.
《植物生态学报》2016,40(4):292
Aims
Estimating soil organic carbon (SOC) density and influence factors of tropical virgin forests in Hainan Island provide new insight in basic data for SOC pool estimation and its dynamics study.
Methods
The main distribution areas of tropical virgin forests in Jianfengling (JFL), Bawangling (BWL), Wu- zhishan (WZS), Diaoluoshan (DLS), Yinggeling (YGL) of Hainan Island were selected, and soil samples (0-100 cm) were sampled and analyzed. SOC density was estimated by soil vertical fitting method and soil stratification method to discover the distribution characteristics of soil organic carbon in tropical virgin forests of Hainan Island.
Important findings
Results showed that: (1) The average SOC density using soil vertical fitting method in JFL, BWL, WZS, DLS and YGL was 14.98, 18.46, 16.48, 18.81, 16.66 kg·m-2, respectively, which was significantly higher (p < 0.05) than the estimated average SOC density using soil stratification method in these areas (14.73, 16.24, 15.50, 16.91, 15.03 kg·m-2, respectively). It is better to use soil vertical fitting method for SOC density estimation when the soil was natural without disturbance. (2) The proportion of SOC content in the first 0-30 cm depth interval out of SOC in the whole 0-100 cm soil profiles in JFL, BWL, WZS, DLS and YGL was 50.50%, 48.56%, 43.49%, 47.37%, 42.88%, respectively. (3) SOC density was significantly negative correlated with Shannon-Wiener index, Simpson index, species richness, and soil bulk density; and was significantly positive correlated with altitude, soil porosity, and soil nitrogen. However, SOC density was not significantly correlated to slope, biomass, average diameter at breast height, or average height. (4) Our study area Hainan was located in low latitude area with high rainfall and high temperature, which accelerated the decomposition of organic matter and nutrient recycling, resulting in significantly lower SOC densities in this tropical virgin forests of Hainan Island than the average value in China.  相似文献   
119.
林火是大兴安岭地区森林生态系统的重要影响因子,研究火灾对植物多样性和优势种多度长期影响,有助于火灾区域森林生态系统重建与管理。本研究以大兴安岭不同火烧年限(1~5、5~10、10~20、20~30、30~40和40~50年)48对配对样地(火烧样地与邻近未火烧对照样地)为研究对象,利用二者差值变化来探讨森林恢复年限对植物多样性指数影响,通过对乔灌草相对多度变化确认火灾恢复对优势种的影响。研究结果表明:(1)火烧与对照间乔木多样性和丰富度差值先降后升趋势,在10年左右最低,而恢复30~40年后与对照样地相当或更高。灌木与乔木变化趋势相似,但是变化趋势多达到统计学显著(P<0.05),灌木Shannon-wiener多样性指数和丰富度差值随年限增加而线性上升。草本Simpson多样性指数随火烧年限增加而直线下降,但是均匀度与丰富度没有出现线性变化。(2)乔灌草优势种变化趋势为:乔木层白桦(Betula platyphylla)在火烧5~30年占比均超过30%,在30年后占比不超过15%,同时兴安落叶松(Larix gmelinii)在30~40年占比超过50%;灌木层在0~30年均是越桔(Vaccinium vitis-idaea)占比最大,30年之后变为榛子(Corylus heterophylla),草本层5~30年均是小叶章(Deyeuxia angustifolia)占比最大,30年之后变为其他物种。对照样地乔木层主要是兴安落叶松,占比超过50%,灌木层主要是越桔(Vaccinium vitis-idaea),草本层主要是小叶章(Deyeuxia angustifolia)。整体来看,乔木火后恢复需要更长的时间,而灌木和草本火后恢复更快。植物多样性及优势种变化是研究其对生态服务功能(如碳汇)影响的基础,我们研究结果为天保工程后续实施及科学管理大兴安岭森林生态系统提供数据支撑。  相似文献   
120.
This review updates the information upon the chemical composition of propolis from all Mediterranean countries as well as their biological properties and applications. The non‐volatile fraction of propolis was characterized by the presence of phenolic acids and their esters and flavonoids. Nevertheless, in some countries, diterpenes were also present: Sicily (Italy), Croatia, Malta, Creta (Greece), Turkey, Cyprus, Egypt, Libya, Algeria and Morocco. The volatile fraction of propolis was characterized by the presence of benzoic acid and its esters, mono‐ and sesquiterpenes, being the oxygenated sesquiterpene β‐eudesmol characteristic of poplar propolis, whereas the hydrocarbon monoterpene α‐pinene has been related with the presence of conifers. Regardless the chemical composition, there are common biological properties attributed to propolis. Owing to these attributes, propolis has been target of study for applications in diverse areas, such as food, medicine and livestock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号