首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1034篇
  免费   39篇
  国内免费   45篇
  1118篇
  2023年   11篇
  2022年   6篇
  2021年   9篇
  2020年   23篇
  2019年   23篇
  2018年   20篇
  2017年   21篇
  2016年   18篇
  2015年   22篇
  2014年   14篇
  2013年   56篇
  2012年   11篇
  2011年   19篇
  2010年   24篇
  2009年   27篇
  2008年   36篇
  2007年   40篇
  2006年   34篇
  2005年   36篇
  2004年   49篇
  2003年   26篇
  2002年   23篇
  2001年   44篇
  2000年   40篇
  1999年   30篇
  1998年   22篇
  1997年   27篇
  1996年   49篇
  1995年   31篇
  1994年   27篇
  1993年   28篇
  1992年   27篇
  1991年   23篇
  1990年   31篇
  1989年   21篇
  1988年   21篇
  1987年   39篇
  1986年   25篇
  1985年   13篇
  1984年   16篇
  1983年   6篇
  1982年   12篇
  1981年   13篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1971年   3篇
排序方式: 共有1118条查询结果,搜索用时 15 毫秒
41.
Chlorophyll loss in leaves of cut flowers of alstroemeria (Alstroemeria pelegrina L. cv. Westland) was rapid in darkness and counteracted by irradiation and treatment of the flowers with gibberellic acid (GA3). The mechanism of the effect of GA3 under dark conditions was investigated. The content of various carbohydrates in the leaves under dark conditions rapidly decreased; this was not influenced by treatment with GA3. indicating that the loss of carbohydrates in the leaves did not induce the loss of chlorophyll. Placing the cut flowers in various solutions of organic and inorganic nutrients exhibited no significant effect on the retention of chlorophyll in leaves of dark-senescing flowers. The total nitrogen content in leaves of dark-senescing cut flowers decreased with time. Leaves of GA3-treated flowers retained more nitrogen. In contrast, the buds of GA3-treated flowers retained less nitrogen during senescence in the dark than control buds. To investigate whether GA3 affects export of assimilates from the leaf to various parts of control and GA3-treated flowers, we labelled one leaf with radioactive carbon dioxide. 14C-assimilates accumulated preferentially in the flowers, in which the relative specific activity of the youngest floral buds was highest. No significant differences were observed in the distribution of 14C-labelled compounds between the buds of control and GA3-treated flowers. To establish the importance of source-sink relations for the loss of leaf chlorophyll we removed the flower buds (i. e. the strongest sink) from the cut flowers. This removal only slightly delayed chlorophyll loss as compared to the large delay caused by GA3-treatment. In addition, detached leaf tips exhibited chlorophyll loss in the dark, which was delayed by GA3-treatment in a fashion comparable with that in flowers. Together these data demonstrate that interactions of the leaves with other plant organs are not essential for chlorophyll loss during senescence in the dark. Additionally, we have found no evidence that GA3 delays the loss of chlorophyll by affecting the transport of nutrients within the cut flowers.  相似文献   
42.
A relatively drought tolerant cultivar of maize ( Zea mays L. cv. Pioneer 3950) and a drought tolerant line of sorghum ( Sorghum bicolor [L.] Moench cv. ICSV 112) were grown hydroponically for 11 days. Treatments for non-ionic osmotic and salt stresses were started at the 8th day by addition of polyethylene glycol 6000 and NaCl, respectively, at 200 mOsm equivalent concentrations in the presence or absence of 0. 1 μ M abscisic acid. Relative growth rate was depressed by both stress factors, more severely for maize than sorghum. Abscisic acid increased the growth rate and reverted the negative effect of NaCl in maize, while sorghum was only slightly affected. In general, sorghum had higher levels of K+ and lower levels of Na+ and the K+/Na+ ratio was further increased by abscisic acid treatment. From the pressure-volume curves, osmotic potential, the water potential at turgor loss point, bulk elastic modulus and the water saturation deficit at initial turgor loss were estimated. Most significantly, sorghum had a higher elastic modulus than maize and it decreased under osmotic treatment, while in maize it increased under NaCl stress. The results suggest that bulk tissue turgor was not limiting growth under these conditions and underscores the possible implications of changes in the elastic condition of the cell walls in stress responses.  相似文献   
43.
In each of two experiments done under controlled conditions, starting at bloom, 4 humidity treatments were applied to potted trees of apple ( Malus pumila Mill. cv. Cox's Orange Pippin), i. e. in experiment 1: (1) high humidity throughout, (2) low humidity throughout, (3) low humidity for 7 weeks followed by high humidity for 6-7 weeks, and (4) the reverse (first high and then low humidity); in experiment 2: (1) day/night humidity high/high, (2) low/low, (3) low/high, and (4) high/low.
In both experiments high humidity favoured shoot growth appreciably. Change from low to high humidity after 7 weeks resulted in some growth stimulation but in the reverse situation growth was markedly reduced. Shoot growth responded little to different night humidities. In the two experiments fruit growth was little affected by treatments. In experiment 2 irrespective of night humidity, water consumption was higher at low than at high day humidity. In the high/low humidity regime water use during the night was high and leaf water potential low, relatively; during the day water potential was little affected by treatments.
At any time leaf Ca and Mg were clearly highest at low day humidity; night humidity had no effect. Leaf K did not respond to treatments. Fruit Ca at high humidity throughout was lower than at low humidity throughout. Increasing humidity later in the season was ineffective but a decrease at that time tended to reduce fruit Ca slightly. The clearly lowest Ca values occurred in the high/low day/night treatment. Fruit K and Mg were not or hardly affected by treatments.
The findings are discussed in terms of humidity effects on transpiration, shoot and fruit growth, and xylem mineral concentration and ion exchange translocation along the xylem walls.  相似文献   
44.
Proximity partner choice by male chimpanzees of various age classes was analyzed in relation to their spatial positioning. Field work was carried out twice at the Mahale Mountains National Park, Tanzania. Proximity data were recorded at 3 and 10m from the focal animal. The data for the proximity between the focal male and other individuals allowed the males to be classified into two categories according to both criteria: early adolescence to young adult, and prime to old age. Between the males, the 3m proximity data permitted a classification into two categories as above, but those for 10m did not. These two spatial distances thus probably have different meanings for the males. The numbers of male proximity partners and proximity with the alpha male also allowed the males to be classified into two categories: early and late adolescence, and young adult to old age. Together, the above results support the classification of males into three age-graded categories: (1) early and late adolescence, (2) young adult, and (3) prime to old age. This does not arise because the males of each category form an age group. Prime or older males are most frequently in proximity, while their juniors consistently attempt to approach them. However, even prime or older males are not equally in proximity with one another. Their proximity partners change as time passes. Probably recognizing such changes, they form coalitions or are in rivalry. The sexual interest of adolescent males is probably a factor stimulating them to separate from their mothers, and to approach older males. Young adult males, even though physically mature, do not have equal proximity relations with older males. They are not yet sufficiently qualified to join the coalitions formed by their seniors.  相似文献   
45.
Arp  W. J.  Drake  B. G.  Pockman  W. T.  Curtis  P. S.  Whigham  D. F. 《Plant Ecology》1993,(1):133-143
Elevated atmospheric CO2 is known to stimulate photosynthesis and growth of plants with the C3 pathway but less of plants with the C4 pathway. An increase in the CO2 concentration can therefore be expected to change the competitive interactions between C3 and C4 species. The effect of long term exposure to elevated CO2 (ambient CO2 concentration +340 µmol CO2 mol-1) on a salt marsh vegetation with both C3 and C4 species was investigated. Elevated CO2 increased the biomass of the C3 sedgeScirpus olneyi growing in a pure stand, while the biomass of the C4 grassSpartina patens in a monospecific community was not affected. In the mixed C3/C4 community the C3 sedge showed a very large relative increase in biomass in elevated CO2 while the biomass of the C4 species declined.The C4 grassSpartina patens dominated the higher areas of the salt marsh, while the C3 sedgeScirpus olneyi was most abundant at the lower elevations, and the mixed community occupied intermediate elevations.Scirpus growth may have been restricted by drought and salt stress at the higher elevations, whileSpartina growth at the lower elevations may be affected by the higher frequency of flooding. Elevated CO2 may affect the species distribution in the salt marsh if it allowsScirpus to grow at higher elevations where it in turn may affect the growth ofSpartina.  相似文献   
46.
The climate of the native tropical forest habitats of Hylocereus undatus, a hemiepiphytic cactus cultivated in 20 countries for its fruit, can help explain the response of its net CO2 uptake to environmental factors. Under wet conditions, about 85% of the total daily net CO2 uptake occurs at night via Crassulacean acid metabolism, leading to a high water‐use efficiency. Total daily net CO2 uptake is reduced 57% by only 10 days of drought, possibly involving stomatal closure induced by abscisic acid produced in the roots, which typically occupy a small substrate volume. Total daily net CO2 uptake for H. undatus is maximal at day/night air temperatures of 30/20°C, optimal temperatures that are higher than those for desert cacti but representative of ambient temperatures in the tropics; its total daily net CO2 uptake becomes zero at day/night air temperatures of 42/32°C. Stem damage occurs at 45°C for H. undatus, whose photosynthetic cells show little acclimation to high temperatures compared with other cacti and are also sensitive to low temperatures, ‐1.5°C killing half of these cells. Consistent with its shaded habitat, total daily net CO2 uptake is appreciable at a total daily PPF of only 2 mol m2 day' and is maximal at 20 mol m?2 day?1, above which photoinhibition reduces net CO2 uptake. Net CO2 uptake ability, which is highly correlated with stem nitrogen and chlorophyll contents, changes only gradually (halftimes of 2–3 months) as the concentration of applied N is changed. Doubling the atmospheric CO2 concentration raises the total daily net CO2 uptake of H. undatus by 34% under optimal conditions and by even larger percentages under adverse environmental conditions.  相似文献   
47.
This paper presents results of field studies on the estuarine dinoflagellate Prorocentrum mariae-lebouriae (Parke & Ballantine) Faust in Chesapeake Bay. We tested the hypothesis that the photosynthetic physiology of Prorocentrum shows adaptive responses to low-light during a lengthy subpycnocline transport in estuarine circulation. Prorocentrum underwent a seasonal, northward trnasport between February and June, 1984 and 1985. Low cell densities occurred in the seaward part of the estuary during winter and early-spring, subpycnocline populations progressed up-estuary in the ensuring 2–3 months, and dense surface populations developed in the mesohaline portion of the estuary thereafter. We sampled Prorocentrum from surface and subpycnocline waters and measured photosynthesis-light (P-I) relations with in situ incubations. The photophysiology of Prorocentrum collected below the pycnoline differed from that of cells in the surface mixed layer in that photosynthetic efficiency, α-cell?1, was higher, photosynthetic capacity, Pmax-cell?1 was ·4 times greater for subpycnocline (≦ 10m) samples than for those from the surface mixed layer (≧ 6m). Comparison of in situ photosynthetic properties to those generated in laboratory studies showed that values of α·cell?1 for both surface and subpycnocline samples were in the range found for cultures in low-light. Concentrations of Chls a, c and peridinin·cell?1 and molar pigment ratios peridinin: Chl a and Chl a: Chl c were not significantly different for the surface and subpycnocline samples, nor were C · cell?1 or C : Chl a. Chloroplast and starch volume fractions and the number of thylakoids were the same for samples collected at different depths, and there was no evidence of cytoplasmic vacuolization in any field samples. These morphometric data for cells from natural populations of Prorocentrum most closely resembled data for laboratory cultures grown at or near 2.6E·m-?2·4d?1. A lower growth irradiance of 0.3E·m?2·d?1 produced indications of stress in cultures, including starch depletion and vacuolization, that were never observed in natural populations. Based on the combination of these findings, we conclude that Prorocentrum is adapted to low-light both in the surface mixed layer and beneath the pycnocline, although certain photophysiological characteristics distinguish these two groups of samples.  相似文献   
48.
Responses in stomatal conductance (g st ) and leaf xylem pressure potential ( leaf ) to elevated CO2 (2x ambient) were compared among 12 tallgrass prairie species that differed in growth form and growth rate. Open-top chambers (OTCs, 4.5 m diameter, 4.0 m in height) were used to expose plants to ambient and elevated CO2 concentrations from April through November in undisturbed tallgrass prairie in NE Kansas (USA). In June and August, leaf was usually higher in all species at elevated CO2 and was lowest in adjacent field plots (without OTCs). During June, when water availability was high, elevated CO2 resulted in decreased g st in 10 of the 12 species measured. Greatest decreases in g st (ca. 50%) occurred in growth forms with the highest potential growth rates (C3 and C4 grasses, and C3 ruderals). In contrast, no significant decrease in g st was measured in the two C3 shrubs. During a dry period in September, reductions in g st at elevated CO2 were measured in only two species (a C3 ruderal and a C4 grass) whereas increased g st at elevated CO2 was measured in the shrubs and a C3 forb. These increases in g st were attributed to enhanced leaf in the elevated CO2 plants resulting from increased soil water availability and/or greater root biomass. During a wet period in September, only reductions in g st were measured in response to elevated CO2. Thus, there was significant interspecific variability in stomatal responses to CO2 that may be related to growth form or growth rate and plant water relations. The effect of growth in the OTCs, relative to field plants, was usually positive for g st and was greatest (>30%) when water availability was low, but only 6–12% when leaf was high.The results of this study confirm the importance of considering interactions between indirect effects of high CO2 of plant water relations and direct effects of elevated CO2 on g st , particularly in ecosystems such as grasslands where water availability often limits productivity. A product of this interaction is that the potential exists for either positive or negative responses in g st to be measured at elevated levels of CO2.  相似文献   
49.
Root to shoot ratio of crops as influenced by CO2   总被引:1,自引:0,他引:1  
Crops of tomorrow are likely to grow under higher levels of atmospheric CO2. Fundamental crop growth processes will be affected and chief among these is carbon allocation. The root to shoot ratio (R:S, defined as dry weight of root biomass divided by dry weight of shoot biomass) depends upon the partitioning of photosynthate which may be influenced by environmental stimuli. Exposure of plant canopies to high CO2 concentration often stimulates the growth of both shoot and root, but the question remains whether elevated atmospheric CO2 concentration will affect roots and shoots of crop plants proportionally. Since elevated CO2 can induce changes in plant structure and function, there may be differences in allocation between root and shoot, at least under some conditions. The effect of elevated atmospheric CO2 on carbon allocation has yet to be fully elucidated, especially in the context of changing resource availability. Herein we review root to shoot allocation as affected by increased concentrations of atmospheric CO2 and provide recommendations for further research. Review of the available literature shows substantial variation in R:S response for crop plants. In many cases (59.5%) R:S increased, in a very few (3.0%) remained unchanged, and in others (37.5%) decreased. The explanation for these differences probably resides in crop type, resource supply, and other experimental factors. Efforts to understand allocation under CO2 enrichment will add substantially to the global change response data base.Abbreviations R:S root to shoot ratio, dry weight basis  相似文献   
50.
The effects of 4 or 8 drought cycles on four grass species,Cenchrus pennisetiformis, Leptochloa fusca, Panicum turgidum, andPennisetum divisum were assessed in a pot experiment. There were significant differences between the species in biomass production under water stress.C. pennisetiformis andP. turgidum produced significantly greater fresh and dry matter thanP. divisum and especially thanL. fusca. L. fusca had the lowest andP. divisum highest osmotic potentials compared with the other species after the completion of 4 or 8 drought cycles. Osmotic adjustment (difference between osmotic potential of droughted/rehydrated plants and control plants) was highest inL. fusca. The stomatal conductance was significantly decreased with increased drought stress inC. pennisetiformis. The elasticity ofC. pennisetiformis, P. turgidum andP. divisum increased with increase in number of drought cycles, whereas that ofL. fusca remained unchanged.L. fusca andP. turgidum had the lowest leaf hydration of all species after 8 drought cycles. The chlorophyllsa andb in all species remained unaffected by drought treatments. The proline content ofC. pennisetiformis andL. fusca increased significantly with increased drought stress, whereas that ofP. turgidum remained unaffected after 4 or 8 drought cycles.L. fusca synthesized great amount of leaf soluble proteins during 8 drought cycles, whereasP. divisum had low protein content after 4 drought cycles. The protein contents ofC. pennisetiformis andP. turgidum remained unaffected after 8 drought cycles. The leaf epicuticular wax ofL. fusca increased consistently with increased drought stress, but leaf wax ofP. divisum increased only at the highest drought stress and that ofC. pennisetiformis andP. turgidum increased after 4 drought cycles. On the basis of these results it was established thatC. pennisetiformis andP. turgidum were the most tolerant,P. divisum intermediate, andL. fusca the most sensitive to drought stress. The osmotic adjustment did not positively correlate with the degree of drought resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号