首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1238篇
  免费   112篇
  国内免费   417篇
  1767篇
  2024年   10篇
  2023年   40篇
  2022年   61篇
  2021年   54篇
  2020年   75篇
  2019年   67篇
  2018年   67篇
  2017年   60篇
  2016年   58篇
  2015年   51篇
  2014年   76篇
  2013年   106篇
  2012年   48篇
  2011年   102篇
  2010年   58篇
  2009年   98篇
  2008年   83篇
  2007年   77篇
  2006年   58篇
  2005年   54篇
  2004年   49篇
  2003年   64篇
  2002年   42篇
  2001年   36篇
  2000年   35篇
  1999年   39篇
  1998年   22篇
  1997年   19篇
  1996年   12篇
  1995年   19篇
  1994年   20篇
  1993年   11篇
  1992年   11篇
  1991年   9篇
  1990年   14篇
  1989年   9篇
  1988年   5篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   3篇
  1982年   9篇
  1980年   3篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1950年   1篇
排序方式: 共有1767条查询结果,搜索用时 15 毫秒
61.
Summary Two sugarbeet (Beta vulgaris L.) genotypes, REL-1 and REL-2, were used to measure the level of somatic embryo and shoot production from hormone-autonomous callus plated under varied nutrient medium combinations of abscisic acid with the growth regulators 6-benzyladenine, 1-naphthaleneacetic acid, or 2,4-dichlorophenoxyacetic acid, with eight sole nitrogen sources, or with different sucrose concentrations. Clone REL-2 produced embryos up to 35-fold more frequently than clone REL-1. Inclusion of abscisic acid at some concentrations consistently improved embryo production in all experiments and was observed to stimulate shoot production. At some concentrations, 1-naphthaleneacetic acid as well as urea and glutamine stimulated greater embryo production over the control, but only for REL-1, for which there was greater room for improvement. Three and five percent sucrose were superior to 1, 7, and 9%. Higher initial 6-benzyladenine concentration [in the range 0, 0.1−1.0 mg/L (0.44−4.44 μM)] was associated with lower embryo production but greater shoot regeneration for both clones. REL-2 was significantly better than REL-1 in shoot regeneration. The range of embryo production was more than 35-fold between genotypes, whereas the range of physiological effects was no greater than 10-fold. REL-2 has been released to sugarbeet researchers because of its superior embryogenic and shoot regeneration abilities for application in biotechnology.  相似文献   
62.
以2007年烟台四十里湾海域血红哈卡藻(Akashiwo sanguinea Hirasaka)赤潮为对象,研究赤潮消长与水环境因子的关系。研究发现大量陆源降雨污水输入后,海水盐度急剧下降、营养盐大幅增加,特别是活性磷酸盐浓度明显增加,促进了血红哈卡藻的生长繁殖并最终形成赤潮。赤潮发生前海区第一优势种为尖刺拟菱形藻(Pseudo-nitzschia pungens Halse),优势度0.47(0.42—0.52),多样性指数2.63(2.43—2.89);赤潮发生时血红哈卡藻密度范围1.05×105—4.10×106个/L,优势度0.92(0.83—0.99),多样性指数0.27(0.15—0.64);赤潮消退后中肋骨条藻(Skeletonema costatum Cleve)为第一优势种,优势度0.49(0.43—0.55),多样性指数2.46(2.19—2.84)。赤潮的发生、发展、消亡与化学需氧量(COD)、无机氮(DIN)、活性磷酸盐(DIP)、富营养化指数(E)呈显著正相关(P<0.05),与盐度呈显著负相关(P<0.01)。赤潮前、后该海域为贫营养、P限制、叶绿素a含量中等,赤潮期间该海域为富营养、P限制、叶绿素a含量高。通过影响力评定,活性磷酸盐、COD、盐度是此次赤潮发生的主要诱发因子,当活性磷酸盐含量低于0.3μmol/L时,硅藻逐渐取代甲藻,此次赤潮消散。  相似文献   
63.
巴西蘑菇能够降解棉籽壳和麦草两种培养基中木质纤维素复合体中的全部组分,属于白腐真菌;巴西蘑菇降解的有机物质的绝大部分被菌体的呼吸过程消耗掉,其绝对生物学效率较低,仅为4.41%~5.25%;在栽培前期木质素的降解速率大于纤维素和半纤维素,这对纤维素和半纤维素的降解十分有利;非木质纤维素组分主要在菌丝生长阶段被利用,而木质纤维素是子实体生长发育阶段的主要碳源;就整个栽培过程而言,巴西蘑菇生长发育所需要的82.39%~84.50%的碳源来自木质纤维素。  相似文献   
64.
太湖流域生态风险评价   总被引:12,自引:12,他引:12  
许妍  高俊峰  郭建科 《生态学报》2013,33(9):2896-2906
随着城镇的急剧扩张和经济的快速增长,流域生态环境遭到极大冲击和破坏,致使生态系统出现资源退化、环境恶化与灾害风险加剧的趋势,生态环境面临前所未有的挑战.从复合生态系统入手,深入分析流域内各生态系统要素之间的相互作用与影响机制,综合考虑多风险源、多风险受体和生态终点共存情况下的风险大小,从风险源危险度、生境脆弱度及受体损失度三方面构建了流域生态风险评价技术体系,并选取太湖流域为实证区域,对太湖流域2000年、2008年两个时期生态风险的时空演化特征进行评价与分析.结果表明:太湖流域生态风险指数介于0.015-0.253之间,以中等和较低生态风险为主.至2008年,高、较高生态风险所占面积逐渐扩大,已由2000年的5.66%、13.42%增加至6.05%、18.42%,主要集中在流域北部的常州市区、江阴市大部分地区以及无锡市区.  相似文献   
65.
西双版纳地区丛林式橡胶林内植物的水分利用策略   总被引:1,自引:0,他引:1  
  相似文献   
66.
[目的] 解析郫县豆瓣及其酿造半成品-蚕豆醅与辣椒醅微生物多样性和来源,探究郫县豆瓣酿造过程风味化合物特征。[方法] 采用高通量测序法测定蚕豆醅、辣椒醅与混合醅(蚕豆醅-辣椒醅混合物,发酵成熟形成郫县豆瓣)在酿造过程中的微生物群落结构;利用高效气相质谱与高效液相色谱高通量检测蚕豆醅及辣椒醅中基础理化指标及挥发性、非挥发性风味化合物浓度;利用多种生物信息学分析方法对混合醅酿造微生物及风味化合物进行溯源。[结果] 微生物方面:44%–59%的混合醅细菌来源于辣椒醅,5%–22%的混合醅细菌来源于蚕豆醅,其他混合醅细菌来源未知。同时,42%–77%的混合醅真菌来源于辣椒醅,2%–18%的混合醅真菌来源于蚕豆醅,其他混合醅真菌来源未知。另外,16个细菌属由辣椒醅特异性贡献;2个细菌属及2个真菌属由蚕豆醅特异性贡献。化合物方面:1-辛烯-3醇(1-octen-3-ol)、苯乙醛(phenylacetaldehyde)、异丁醛(isobutyraldehyde)、苹果酸(malic acid)与糠醛(furfural)仅由蚕豆醅贡献。辣椒素(capsaicin)、3-甲基-1-丁醇(3-methyl-1-butanol)、已醇(hexanol)与异丁醇(isobutanol)仅由辣椒醅贡献。[结论] 郫县豆瓣发酵中大部分微生物来源于辣椒醅,大部分发酵底物(氨基酸及葡萄糖)来源于蚕豆醅。两种发酵半成品均特异性贡献微生物及风味化合物,形成郫县豆瓣的独特风味密码。  相似文献   
67.
比较分析投加不同微生态制剂的海水养殖系统硝化功能建立的过程,为实际应用提供依据。利用海水素构建4个海水养殖系统,通过投加硝化细菌、光合细菌、枯草芽胞杆菌3种微生态制剂以及纤维毛球作为生物膜载体,比较分析不同养殖系统硝化功能的建立过程及硝化强度差异。投加硝化细菌+光合细菌和硝化细菌+枯草芽胞杆菌系统硝化功能建立时间分别为108 h和96 h,氨氮初始质量浓度为6 mg/L时,氨氧化强度分别为1.69 mg/(L·d)和1.36 mg/(L·d);添加纤维毛球的生物膜系统与生物絮团系统硝化功能建立时间分别为96 h和120 h,氨氮初始质量浓度为6 mg/L时,氨氧化强度分别为1.36 mg/(L·d)和0.98 mg/(L·d);投加碳源系统和对照系统硝化功能建立时间分别为84 h和96 h,氨氮初始质量浓度为6 mg/L时,氨氧化强度分别为1.18 mg/(L·d)和1.36 mg/(L·d)。硝化细菌+枯草芽胞杆菌系统硝化功能建立时间更短,但系统硝化强度低于硝化细菌+光合细菌系统;生物膜系统硝化强度高于生物絮团系统且硝化功能建立更快;添加碳源能够加快系统硝化功能建立过程,但降低了硝化细菌+枯草芽胞杆菌系统的硝化强度。  相似文献   
68.
野骆驼(Camelus ferus)生性机警, 且栖息于远离人迹、自然条件极端恶劣的荒漠、半荒漠地区, 其种群动态和行为生态学研究一直较为缺乏。本研究通过在库姆塔格沙漠地区进行不同季节的野外观测和连续水源地红外相机监测, 对野骆驼的集群行为进行了研究。2011-2013年, 在库姆塔格沙漠地区进行了8次野外调查, 共记录野骆驼64群, 个体430峰。非繁殖季节野骆驼集群大小平均为2.94±0.67峰; 而繁殖季节野骆驼集群大小平均为10.74±3.08峰。野外观测数据证明了野骆驼集群行为存在季节性差异, 倾向于冬季繁殖季节的集群。并于2012年10月至2013年9月期间, 在11个水源地设置11台红外相机, 共记录野骆驼281群745峰。与野外调查结果相比, 红外相机数据表明繁殖期间和非繁殖期间野骆驼集群大小没有显著差异(t = 0.322, P = 0.748)。水源地的地形因素、红外相机监测视角和监测时间的限制可能是造成这一差异的原因。但是两种方法的结果均表明野骆驼在阿尔金山北麓比西湖地区容易形成较大的集群; 同时, 繁殖季节野骆驼最大集群的规模要大于非繁殖季节。尽管利用红外相机进行动物集群行为研究存在一定的局限性, 但与传统基于野外调查的方法相比, 无论是经济上还是实用性方面, 利用红外相机都为我们开展动物行为学研究提供了新的手段。  相似文献   
69.
农业非点源污染关键源区识别方法研究进展   总被引:7,自引:0,他引:7  
在农业非点源污染研究中,识别污染发生的关键源区非常重要.在介绍输出系数法、污染指数法和非点源污染模型法等主要农业非点源污染关键源区识别方法的基础上,分析了输出系数取值、污染指数因子权重分级以及非点源模型法参数获取等方面存在问题,并从野外观测、现有不同识别方法的结合、多角度识别方法的研究以及新技术的应用与集成等方面对未来关键源区识别研究进行了展望,以期为农业非点源污染评价与控制提供借鉴.  相似文献   
70.
黄娜  石铁矛  石羽  李春林  胡远满 《生态学报》2021,41(20):7946-7954
随着城市化进程的加快,城市硬化地表不断挤占透水表面,使得绿色基础设施规模不断下降、破碎化程度逐渐加大,严重影响了绿色基础设施服务功能的有效发挥。绿色基础设施的发展经历了早期萌芽、初步形成和快速发展三个阶段,主要在宏观尺度研究区域生态安全,中观尺度促进城市可持续发展,微观尺度解决社区生态环境问题。目前绿色基础设施的研究内容集中在其生态功能和社会功能两个方面,主要关注调蓄降雨径流、消减非点源污染、调节区域微气候、居民健康与福祉和空间布局公平性。而供需结构的合理配置也是决定绿色基础设施服务水平的关键因素。未来的研究应加强与相关学科的交叉融合,完善绿色基础设施功能的测度与评估方法,将绿色基础设施建设与实际规划相结合,以期为区域可持续发展和国家生态文明建设提供支撑与保障。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号