首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   820篇
  免费   71篇
  国内免费   98篇
  2024年   7篇
  2023年   18篇
  2022年   34篇
  2021年   35篇
  2020年   28篇
  2019年   25篇
  2018年   41篇
  2017年   28篇
  2016年   31篇
  2015年   36篇
  2014年   24篇
  2013年   97篇
  2012年   36篇
  2011年   31篇
  2010年   24篇
  2009年   42篇
  2008年   46篇
  2007年   35篇
  2006年   34篇
  2005年   38篇
  2004年   27篇
  2003年   28篇
  2002年   33篇
  2001年   25篇
  2000年   15篇
  1999年   25篇
  1998年   15篇
  1997年   11篇
  1996年   12篇
  1995年   13篇
  1994年   8篇
  1993年   15篇
  1992年   3篇
  1991年   9篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   12篇
  1985年   1篇
  1984年   4篇
  1982年   2篇
  1981年   5篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有989条查询结果,搜索用时 156 毫秒
951.
To investigate the spatiotemporal growth dynamics in fungal microcosms and to follow the spatial degradation effects of fungal lignocellulose fermentation, a new and flexible experimental setup was developed and tested. White and brown rot fungi were cultivated under solid-state conditions in beech wood-filled silicon tubes for 5 weeks. After inoculation of wood material at one end of the tube, the culture vessels were aerated and moistured by flushing air through alkaline and aqueous solutions. After incubation, the silicon tubes were harvested and segmented to follow different growth and degradation parameters. This new approach holds great potential since it allows the use of different growth substrates, variable aeration or moisturization conditions and is therefore a useful tool for diverse degradation studies, e.g. respiration/mineralization studies involving flow meters or carbon dioxide sensors or for molecular biological approaches.  相似文献   
952.
Abstract

Sclerotinia sclerotiorum is a cosmopolitan fungal pathogen causing stem and collar watery soft rot of cauliflower. Previous management of this disease with chemical pesticides caused hazardous results which lead to use of more eco-friendly microbial approaches. In the present study, consortia of Trichoderma harzianum TNHU27 and Pseudomonas aeruginosa PJHU15 were assessed for their ability in controlling Sclerotinia rot in cauliflower. The seedlings of cauliflower were challenged singly and in consortium with these two compatible microbes. The plants were evaluated upon challenge inoculation with S. sclerotiorum for changes in total phenolic content, the activity of defense and antioxidative enzymes. The microbial consortium comprising of T. harzianum and P. aeruginosa significantly enhanced the defense responses of the plant in comparison to pathogen challenged and unchallenged control. The study elucidates that plant beneficial microbes in the consortium may provide superior protection by induction of faster and enhanced defense responses in comparison to unchallenged and single microbe challenged plants under pathogen challenged conditions.  相似文献   
953.
Frequent application of foliar fungicide is essential for chickpea production due to the susceptibility of this plant to ascochyta blight. Chlorothalonil, pyraclostrobin, and boscalid are commonly used to control the disease in Saskatchewan. While fungicides are meant to target specific fungal pathogens, they may impact non-target organisms and alter soil microbial community structure. The effects of the typical 5-time foliar fungicide application program to chickpea CDC Vanguard on the fungal communities associated with seminal and adventitious roots of the following durum wheat crop were studied in a 2 yr field experiment. Root fungal communities were characterized through analysis of the ITS1 region of root metagenomic DNA at the genus level. One hundred and seven fungal genera were detected in durum wheat roots. Fusarium was predominant in both years. A three-way interaction of fungicide application, root type and year on fungal community structure was detected. Unlike Fusarium, the relative abundances of the genera Olpidium, Alternaria, and Cryptococcus were greater in 2010, a very wet year. Fungicide application to chickpea increased the relative abundance of Fusarium in the seminal roots of a subsequent durum crop in 2009, but did not affect the relative abundance of Fusarium in 2010. We could not detect a significant impact of fungicide application to chickpea on durum wheat yield in the subsequent year. The effect of changes in root fungal communities on durum wheat grain yield is discussed.  相似文献   
954.
This study evaluated the decay resistance of ash (Fraxinus excelsior L.), beech (Fagus sylvatica L.), and maple (Acer platanoides L.) wood impregnated by a full cell process with N-methylol melamine (NMM) and combined NMM-metal complex dye (NMM-BS) in aqueous solutions. Basidiomycete decay testing involved incubation with Coniophora puteana (brown rot) and Trametes versicolor (white rot) according to a modified EN 113 (1996) standard, while for the soft rot fungal resistance was evaluated following the standard ENv 807 (2001). NMM and NMM-BS modifications at a WPG range of 7–11% provided decay protection against brown rot resulting in a mass loss less than the required limit (3%). The NMM and NMM-BS modified wood showed increased resistance to white rot decay; however, a higher WPG is needed to prohibit attack from this hardwood specific fungus. The metal-complex dye alone revealed biocidal effects against basidiomycetes. An increased WPG in NMM or NMM-BS had a positive impact against soft rot decay and the lowest mass losses after 32 weeks of exposure were obtained with NMM modification at about 18–21% WPG. NMM modification at this WPG range, however, was not sufficient to protect the wood from soft rot decay. The wood of beech and maple showed slightly higher resistance to all decay types than ash, probably due to the poorer degree of modification of the latter.  相似文献   
955.
Pikeperch Stizostedion lucioperca from two different water areas off the Finnish south coast were affected by three types of fin abnormalities: fin anomalies, acute fin erosion (fin rot) and healed fin erosion. Fin erosion occurred at high prevalences at both areas, while fin anomalies occurred mainly in the area polluted by sewage.  相似文献   
956.
957.
Soybean, Glycine max (L.) Merrill (Fabaceae), is an introduced crop to America and initially benefited from a small number of pests threatening its production. Since its rapid expansion in production beginning in the 1930s, several pests have been introduced from the native range of soybean. Our knowledge of how these pests interact and the implications for management is limited. We examined how three common economic soybean pests, the nematode Heterodera glycines Ichinohe (Nematoda: Heteroderidae), the fungus Cadophora gregata Harrington & McNew (Incertae sedis), and the aphid Aphis glycines Matsumura (Hemiptera: Aphididae), interact on soybean cyst nematode‐susceptible (SCN‐S) and soybean cyst nematode‐resistant cultivars carrying the PI 88788 resistance source (SCN‐R). From 2008 to 2010, six soybean cultivars were infested with either a single pest or all three pests in combination in a micro‐plot field experiment. Pest performance was measured in a ‘single pest’ treatment and compared with pest performance in the ‘multiple pest’ treatment, allowing us to measure the impact of SCN resistance and the presence of other soybean pests on each pest’s performance. Performance of H. glycines (80% reduction in reproduction) and A. glycines (19.8% reduction in plant exposure) was reduced on SCN‐R cultivars. Regardless of cultivar, the presence of multiple pests significantly decreased the performance of A. glycines, but significantly increased H. glycines performance. The presence of multiple pests decreased the performance of C. gregata on SCN‐S soybean cultivars (20.6% reduction in disease rating).  相似文献   
958.
Citriculture is an important economic activity worldwide and for decades, this sector has been responsible for creating job opportunities. Currently, Brazil is the largest orange producer in the world, which contributes to the country's economy. However, citrus production has been facing several issues that compromise the quality of the fruits. For instance, several postharvest diseases occur during storage and transportation, directly harming product marketing. Green mold, blue mold, and sour rot are considered the most common postharvest citrus diseases. Citrus sour rot is less common; however, the disease can lead to a significant loss in high rainfall seasons. The fungus Geotrichum candidum is the causal agent of sour rot and its chemical and biochemical infection strategies are still little explored in citrus fruits. Several conventional control methods, including the application of fungicides, aim to contain the disease proliferation, but most of the commercially available fungicides are not efficient against sour rot. For this reason, other strategies have been studied for disease control, such as chemicals (e. g. essential oils or other natural products), biological agents used as biocontrol, and physical strategies. Despite its importance, few reviews have focused on sour rot disease. Here, we summarize the biochemical aspects of G. candidum, as well as the metabolites produced by this phytopathogen, the known virulence factors, and advances for disease management.  相似文献   
959.
960.
This study examined the performances of 21 cassava cultivars in two cropping seasons on the field against root rot disease and the yield in cassava-maize intercrop. Data were collected on number of root/plant, weight of root (t/ha) and disease severity (DS) on rotted roots at 12 and 16 months after planting (MAP), respectively. There were significant (P ≤ 0.05) differences for DS at 12 and 16 MAP in both seasons with cultivar TMS 97/JW2 having the least DS score. TMS 97/JW2 was resistant to the root rot pathogen, while eleven other cultivars were moderately resistant to the disease at 16 MAP. There was no consistency in the roots weight for the cultivars over the two cropping seasons but higher roots weight was recorded at 16 MAP than 12 MAP with different cultivars having highest roots weight at these periods. Intercropping maize with cassava does not have any management potential on root rot development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号