首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3632篇
  免费   252篇
  国内免费   340篇
  4224篇
  2024年   12篇
  2023年   97篇
  2022年   117篇
  2021年   136篇
  2020年   149篇
  2019年   193篇
  2018年   158篇
  2017年   189篇
  2016年   147篇
  2015年   139篇
  2014年   215篇
  2013年   359篇
  2012年   141篇
  2011年   217篇
  2010年   153篇
  2009年   190篇
  2008年   181篇
  2007年   190篇
  2006年   150篇
  2005年   152篇
  2004年   137篇
  2003年   115篇
  2002年   104篇
  2001年   60篇
  2000年   48篇
  1999年   44篇
  1998年   38篇
  1997年   60篇
  1996年   41篇
  1995年   28篇
  1994年   31篇
  1993年   29篇
  1992年   36篇
  1991年   20篇
  1990年   32篇
  1989年   16篇
  1988年   12篇
  1987年   9篇
  1986年   7篇
  1985年   15篇
  1984年   14篇
  1983年   12篇
  1982年   6篇
  1981年   7篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1973年   1篇
  1971年   1篇
排序方式: 共有4224条查询结果,搜索用时 15 毫秒
61.
《MABS-AUSTIN》2013,5(4):770-777
Although improvements in technology for the isolation of potential therapeutic antibodies have made the process increasingly predictable, the development of biologically active monoclonal antibodies (mAbs) into drugs can often be impeded by developability issues such as poor expression, solubility, and promiscuous cross-reactivity. Establishing early stage developability screening assays capable of predicting late stage behavior is therefore of high value to minimize development risks. Toward this goal, we selected a panel of 16 monoclonal antibodies (mAbs) representing different developability profiles, in terms of self- and cross-interaction propensity, and examined their downstream behavior from expression titer to accelerated stability and pharmacokinetics in mice. Clearance rates showed significant rank-order correlations to 2 cross-interaction related assays, with the closest correlation to a non-specificity assay on the surface of yeast. Additionally, 2 self-association assays correlated with each other but not to mouse clearance rate. This case study suggests that combining assays capable of high throughput screening of self- and cross-interaction early in the discovery stage could significantly lower downstream development risks.  相似文献   
62.
Abstract

Farnesoid X receptor (FXR), a bile acid receptor, has important roles in maintaining bile acid and cholesterol homeostasis, which is an attractive target for hyperlipidemia. Present study aimed to discover potential selective FXR agonists over G-protein coupled bile acid receptor 1 (GPBAR1, TGR5) from traditional Chinese medicine (TCM) by using virtual screening, in vitro studies and molecular dynamics simulation (MD). Ligand-based pharmacophore model for FXR was firstly built to screen FXR agonists from the Traditional Chinese Medicine Database (TCMD). Then, 21 FXR crystal structures were clustered in two types and two representative structures (PDB ID: 3OMM and 3P89) were, respectively, used to carry out molecular docking to refine the screened result. Moreover, the pharmacophore model for GPBAR1 was built to screen selective FXR agonists with no activity on GPBAR1. A set of 24 candidate selective FXR agonists which fitvalue of FXR pharmacophore model and docking score of 3OMM and 3P89 were in the top 100 and cannot match the pharmacophore model for GPBAR1 were obtained. By the lipid-lowering activity test in HepG2 cell lines, Arctigenin was identified to be potential selective FXR agonist with the activity of 20?μmol·L?1. After down-regulating FXR, Arctigenin could increase the mRNA of FXR while exerted no effect on the mRNA of GPBAR1. MD was further used to interpret the mechanism of Arctigenin with the representative structures. This research provided a new screening procedure for finding selective candidate compounds and appropriate docking models of a target by considering the structure diversity of PDB structures, which was applied to discovery novel selective FXR agonists to treat hyperlipidemia.

Communicated by Ramaswamy H. Sarma  相似文献   
63.
Ultra Quenchbody (UQ-body) is a biosensor that utilizes the quenching behavior of the fluorescent dye linked to the antibody V region. When the corresponding antigen is bound to the UQ-body, the fluorescence is restored and allows the detection of target molecules easily and sensitively. In this paper, we constructed UQ-bodies to sensitively detect the human epidermal growth factor receptor 2 (HER2) cancer marker in solution or on cancer cells, which was further used to kill the cancer cells. A synthetic Fab fragment of anti-HER2 antibody Fab37 with many Trp residues at hypervariable region was prepared and labeled with fluorescent dyes to obtain the UQ-bodies. The UQ-body could detect HER2 in solution at concentrations as low as 20 pM with an EC50 of 0.3 nM with a fourfold response. Fluorescence imaging of HER2-positive cells was successfully performed without any washing steps. To deliver small interfering RNA (siRNA) to cancer cells, a modified UQ-body with C-terminal 9R sequence was also prepared. HER2-positive cancer cells were effectively killed by polo-like kinase 1 siRNA intracellularly delivered by the UQ-body-9R. The novel approach employing siRNA-empowered UQ-body could detect and image the HER2 antigen easily and sensitively, and effectively kill the HER2-positive cancer cells.  相似文献   
64.
A key challenge for bioprocess engineering is the identification of the optimum process conditions for the production of biochemical and biopharmaceutical compounds using prokaryotic as well as eukaryotic cell factories. Shake flasks and bench-scale bioreactor systems are still the golden standard in the early stage of bioprocess development, though they are known to be expensive, time-consuming, and labor-intensive as well as lacking the throughput for efficient production optimizations. To bridge the technological gap between bioprocess optimization and upscaling, we have developed a microfluidic bioreactor array to reduce time and costs, and to increase throughput compared with traditional lab-scale culture strategies. We present a multifunctional microfluidic device containing 12 individual bioreactors (Vt = 15 µl) in a 26 mm × 76 mm area with in-line biosensing of dissolved oxygen and biomass concentration. Following initial device characterization, the bioreactor lab-on-a-chip was used in a proof-of-principle study to identify the most productive cell line for lactic acid production out of two engineered yeast strains, evaluating whether it could reduce the time needed for collecting meaningful data compared with shake flasks cultures. Results of the study showed significant difference in the strains' productivity within 3 hr of operation exhibiting a 4- to 6-fold higher lactic acid production, thus pointing at the potential of microfluidic technology as effective screening tool for fast and parallelizable industrial bioprocess development.  相似文献   
65.

Background and Aims

Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant''s life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions.

Methods

Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately.

Key Results

When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size.

Conclusions

Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth.  相似文献   
66.
Bacterial blight disease caused by Xanthomonas axonopodis pv. manihotis (Berthet-Bondar) Dye was assessed in 11 artificially inoculated cassava genotypes in a screenhouse. Disease progress was estimated at intervals of 3 days by measuring the length of necrotic lesions on stems and leaves, as well as estimating the average disease score and area under disease progress curve (AUDPC). Based on the average disease scores, cassava genotypes 30572, TME 1, TME 7 and TME 9 were classified as resistant to bacterial blight, genotypes 4(2)1425, TME 2, TME 4 and TME 12 were tolerant while cassava genotypes 30001, TME 3, and TME 28 were susceptible. Direct correlations, statistically significant at p < 0.05, were obtained between stem necrosis, leaf necrosis, average disease scores and AUDPC in the 11 cassava genotypes. Screenhouse experiments afford rapid assessment of resistance status of cassava genotypes to bacterial blight in Nigeria.  相似文献   
67.
68.
Structural homology modelling was done with the software AMPS, MODELLER, PROCHECK, WHATIF AND VERIFY-3D to generate a quality model of human MARK3. Macromolecular docking simulations seem to confirm recent data in the literature and in MARK3 there does not occur intramolecular interactions between the associated kinase domain KA1 and the catalytic domain. Using virtual screening, we were able to identify and suggest the principal residues of MARK3 which interact with the ligands in addition to those reported in the literature. The pharmacophoric model obtained from Discovery Studio coincides with those obtained by molecular interaction fields, indicating the principal ligand residues of the MARK3 KA1 domain. Using virtual screening with pharmacophoric constraints as well as molecular dynamics, the most stable compounds in the ligand site as well as their potential toxicities were used to select potential inhibitors for further in vitro and in vivo investigations of human MARK3 KA1 domain, which could eventually pass to the market to be used for the treatment of head and neck cancer.  相似文献   
69.
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme for the biosynthesis of essential amino acids and several important metabolites in microbes. Inhibition of ASADH enzyme is a promising drug target strategy against Mycobacterium tuberculosis (Mtb). In this work, in silico approach was used to identify potent inhibitors of Mtb-ASADH. Aspartyl β-difluorophosphonate (β-AFP), a known lead compound, was used to understand the molecular recognition interactions (using molecular docking and molecular dynamics analysis). This analysis helped in validating the computational protocol and established the participation of Arg99, Glu224, Cys130, Arg249, and His256 amino acids as the key amino acids in stabilizing ligand–enzyme interactions for effective binding, an essential feature is H-bonding interactions with the two arginyl residues at the two ends of the ligand. Best binding conformation of β-AFP was selected as a template for shape-based virtual screening (ZINC and NCI databases) to identify compounds that competitively inhibit the Mtb-ASADH. The top rank hits were further subjected to ADME and toxicity filters. Final filter was based on molecular docking analysis. Each screened molecule carries the characteristics of the highly electronegative groups on both sides separated by an average distance of 6?Å. Finally, the best predicted 20 compounds exhibited minimum three H-bonding interactions with Arg99 and Arg249. These identified hits can be further used for designing the more potent inhibitors against ASADH family. MD simulations were also performed on two selected compounds (NSC4862 and ZINC02534243) for further validation. During the MD simulations, both compounds showed same H-bonding interactions and remained bound to key active residues of Mtb-ASADH.  相似文献   
70.
In our recent studies on prevalence of multidrug resistant pathogens in Byramangala reservoir, Karnataka, India, we identified Salmonella typhi, Staphylococcus aureus, and Vibrio cholerae which had acquired multiple drug resistance (MDR) and emerged as superbugs. Hence, there is a pressing demand to identify alternative therapeutic remedies. Our study focused on the screening of herbal leads by structure-based virtual screening. The virulent gene products of these pathogens towards Kanamycin(aph), Trimethoprim(dfrA1), Methicillin (mecI), and Vancomycin (vanH) were identified as the probable drug targets and their 3D structures were predicted by homology modeling. The predicted models showed good stereochemical validity. By extensive literature survey, we selected 58 phytoligands and their drug likeliness and pharmacokinetic properties were computationally predicted. The inhibitory properties of these ligands against drug targets were studied by molecular docking. Our studies revealed that Baicalein from S. baicalensis (baikal skullcap) and Luteolin from Taraxacum officinale (dandelion) were identified as potential inhibitors against aph of S. typhi. Resveratrol from Vitis vinifera (grape vine) and Wogonin from S. baicalensis were identified as potential inhibitors against dfrA1 of S. typhi. Herniarin from Herniaria glabra (rupture worts) and Pyrocide from Daucus carota (Carrot) were identified as the best leads against dfrA1 of V. cholerae. Taraxacin of T. officinale (weber) and Luteolin were identified as potential inhibitors against Mec1. Apigenin from Coffee arabica (coffee) and Luteolin were identified as the best leads against vanH of S. aureus. Our findings pave crucial insights for exploring alternative therapeutics against MDR pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号