排序方式: 共有47条查询结果,搜索用时 46 毫秒
41.
Anna Tesei Carlo Leonetti Gabriella Zupi Marco Scarsella Giovanni Brigliadori Paola Ulivi Francesco Fabbri Chiara Arienti Dino Amadori Alessandro Passardi Rosella Silvestrini Wainer Zoli 《Journal of cellular and molecular medicine》2011,15(2):316-326
Despite the low efficacy of conventional antitumour drugs, chemotherapy remains an essential tool in controlling advanced gastric and oesophageal cancers. We aimed to provide a biological rationale based on the sorafenib–taxotere interaction for the clinical treatment of gastric cancer. In vitro experiments were performed on four human gastric cancer cell lines (GK2, AKG, KKP and NCI‐N87). Cytotoxicity was evaluated by sulforhodamine B (SRB) assay, cell cycle perturbations, apoptosis and mitotic catastrophe were assessed by flow cytometric and microscopic analyses, and protein expression was studied by Western blot. In the in vivo experiments, nude mice xenografted with the most resistant line were treated with sorafenib and docetaxel singly or in association. Sorafenib inhibited cell growth (IG50 values ranged from 3.4 to 8.1 μM) and caused down‐regulation of MAP‐K/ERK phosphorylation and of mcl‐1 and p‐bad expression after a 48‐hr exposure. Apoptosis induction was associated with caspase‐3 and ‐9 activation and mitochondrial membrane depolarization. The drug combination enhanced apoptosis (up to 80%) and produced a synergistic interaction when low doses of the taxane preceded administration of the antityrosine kinase. This synergism was probably due to the induction of an anomalous multidiploid G0‐G1 peak and to consequent mitotic catastrophe, which increased sensitivity to sorafenib. Consistent with in vitro results, the docetaxel–sorafenib sequence exhibited high therapeutic efficacy in NCI‐N87 mouse xenografts producing tumour weight inhibition (> 65%), tumour growth delay (up to 25 days) and increased mouse survival (30%). Our findings suggest the potential clinical usefulness of treatment with sorafenib and docetaxel for advanced gastric cancer. 相似文献
42.
43.
Chengjun Sui Zhitao Dong Cheng Yang Minfeng Zhang Binghua Dai Li Geng Jiongjiong Lu Jiamei Yang Minhui Xu 《Journal of cellular and molecular medicine》2019,23(9):6024-6033
The current study elucidated the role of a long non‐coding RNA (lncRNA), FOXD2‐AS1, in the pathogenesis of hepatocellular carcinoma (HCC) and the regulatory mechanism underlying FOXD2‐AS1/miR‐150‐5p/transmembrane protein 9 (TMEM9) signalling in HCC. Microarray analysis was used for preliminary screening of candidate lncRNAs in HCC tissues. qRT‐PCR and Western blot analyses were used to detect the expression of FOXD2‐AS1. Cell proliferation assays, luciferase assay and RNA immunoprecipitation were performed to examine the mechanism by which FOXD2‐AS1 mediates sorafenib resistance in HCC cells. FOXD2‐AS1 and TMEM9 were significantly decreased and miR‐150‐5p was increased in SR‐HepG2 and SR‐HUH7 cells compared with control parental cells. Overexpression of FOXD2‐AS1 increased TMEM9 expression and overcame the resistance of SR‐HepG2 and SR‐HUH7 cells. Conversely, knockdown of FOXD2‐AS1 decreased TMEM9 expression and increased the sensitivity of HepG2 and Huh7 cells to sorafenib. Our data also demonstrated that FOXD2‐AS1 functioned as a sponge for miR‐150‐5p to modulate TMEM9 expression. Taken together, our findings revealed that FOXD2‐AS1 is an important regulator of TMEM9 and contributed to sorafenib resistance. Thus, FOXD2‐AS1 may serve as a therapeutic target against sorafenib resistance in HCC. 相似文献
44.
45.
M Caraglia G Giuberti M Marra R Addeo L Montella M Murolo P Sperlongano B Vincenzi S Naviglio S Del Prete A Abbruzzese P Stiuso 《Cell death & disease》2011,2(4):e150
We reported a relevant activity of the combination between sorafenib and octreotide long-acting release (LAR) in advanced hepatocellular carcinoma (HCC) patients. In this work, we have studied if oxidative stress in both serum and peripheral blood mononuclear cells (PBMC) and pERK activation status in PBMC could be predictive of response. In the 20 responsive patients, the decrease of reactive oxygen species levels was already detectable after 10 days (T10) from the beginning of sorafenib administration, and this effect was enhanced by the combined treatment with sorafenib+octreotide LAR (T21). This effect correlated with the modulation of superoxide dismutase (SOD) activity (physiological scavenger of O2−) and of serum nitric oxide (NO) levels. Sorafenib alone induced an increase of about 40% of NO levels and of about two-fold of SOD activity in responsive patients, and both effects were significantly potentiated by the combined treatment. We found a gradual reduction of Erk1/2 activity, as evaluated by cytofluorimetric analysis, in 15 responsive patients reaching about 50% maximal decrease at T21. On the other hand, in 17 resistant patients, Erk1/2 activity was about 80% increased at T21. The determination of both the oxidative stress status and pERK activity in PBMC has high value in the prediction of response to sorafenib+octreotide therapy in HCC patients. 相似文献
46.
47.
Chemotherapy resistance is still a key hurdle in current hepatocellular carcinoma (HCC) treatment. Therefore, clarifying the molecular mechanisms contributing to this acquired resistance is urgent for the effective treatment of liver cancer. In this research, we observed that lncRNA FAM225A expression is dramatically up-regulated not only in HCC tissues and cell lines but also in sorafenib-resistant HepG2/SOR cells. Moreover, FAM225A knockdown significantly weakened HepG2/SOR cells resistance to sorafenib treatment by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Similar results were obtained from the tumor xenograft model in mice. Further mechanistic researches revealed that the direct interaction between FAM225A and miR-130a-5p, while miR-130a-5p negatively modulated Cyclin G1 (CCNG1) expression by targeting 3′UTR of CCNG1. MiR-130a-5p inhibition or CCNG1 overexpression could partially offset FAM225A knockdown-induced increased viability of HepG2/SOR cells in response to sorafenib challenge. Collectively, our findings provide evidence that FAM225A/miR-130a-5p/CCNG1 interaction network regulates the resistance of HCC cells to sorafenib treatment and could supply a possible strategy for restoring sorafenib sensitivity in HCC therapy. 相似文献