首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   47篇
  国内免费   14篇
  373篇
  2023年   12篇
  2022年   13篇
  2021年   12篇
  2020年   24篇
  2019年   23篇
  2018年   17篇
  2017年   22篇
  2016年   22篇
  2015年   14篇
  2014年   17篇
  2013年   19篇
  2012年   21篇
  2011年   16篇
  2010年   15篇
  2009年   16篇
  2008年   13篇
  2007年   17篇
  2006年   8篇
  2005年   10篇
  2004年   6篇
  2003年   6篇
  2002年   9篇
  2001年   6篇
  2000年   2篇
  1999年   7篇
  1998年   2篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1986年   2篇
  1985年   3篇
  1982年   1篇
排序方式: 共有373条查询结果,搜索用时 15 毫秒
21.
Anecdotal evidence from many hunter-gatherer societies suggests that successful hunters experience higher prestige and greater reproductive success. Detailed quantitative data on these patterns are now available for five widely dispersed cases (Ache, Hadza, !Kung, Lamalera, and Meriam) and indicate that better hunters exhibit higher age-corrected reproductive success than other men in their social group. Leading explanations to account for this pattern are: (1) direct provisioning of hunters’ wives and offspring, (2) dyadic reciprocity, (3) indirect reciprocity, (4) costly signaling, and (5) phenotypic correlation. I examine the qualitative and quantitative evidence bearing on these explanations and conclude that although none can be definitively rejected, extensive and apparently unconditional sharing of large game somewhat weakens the first three explanations. The costly signaling explanation has support in some cases, although the exact nature of the benefits gained from mating or allying with or deferring to better hunters needs further study. For comments on earlier drafts, I thank Monique Borgerhoff Mulder, Mike Gurven, Ray Hames, Kristen Hawkes, Kim Hill, Robert Kelly, Frank Marlowe, John Patton, and Polly Wiessner. Rebecca Bliege Bird and Douglas W. Bird invited me to collaborate in the Meriam research and (along with Del Passi of Mer) collected the data on Meriam demography. Geoff Kushnick and Matt Wimmer ably assisted with coding and statistical analysis of these data. Eric Alden Smith (PhD 1980, Cornell University) is a professor of anthropology at the University of Washington, Seattle. His research interests include the links between production and reproduction, the ecology and evolution of collective action, and politics in small-scale societies. He has conducted fieldwork among Inuit on Hudson Bay, Meriam in Torres Strait, and Mardu Aborigines in the Australian Western Desert.  相似文献   
22.
τ-Crystallin is a taxon-specific structural protein found in eye lenses. We present here the cloning and sequencing of complete τ-crystallin cDNA from the embryonic lens ofCrocodylus palustris and establish it to be identical to the α-enolase gene from non-lenticular tissues. Quantitatively, the τ-crystallin was found to be the least abundant crystallin of the crocodilian embryonic lenses. Crocodile τ-crystallin cDNA was isolated by RT-PCR using primers designed from the only other reported sequence from duck and completed by 5′- and 3′-rapid amplification of cDNA ends (RACE) using crocodile gene specific primers designed in the study. The complete τ-crystallin cDNA of crocodile comprises 1305 bp long ORF and 92 and 409 bp long untranslated 5′- and 3′-ends respectively. Further, it was found to be identical to its putative counterpart enzyme α-enolase, from brain, heart and gonad, suggesting both to be the product of the same gene. The study thus provides the first report on cDNA sequence of τ-crystallin from a reptilian species and also re-confirms it to be an example of the phenomenon of gene sharing as was demonstrated earlier in the case of peking duck. Moreover, the gene lineage reconstruction analysis helps our understanding of the evolution of crocodilians and avian species.  相似文献   
23.
24.

Background and Aims

Submergence and de-submergence are common phenomena encountered by riparian plants due to water level fluctuations, but little is known about the role of physiological integration in clonal plants (resource sharing between interconnected ramets) in their adaptation to such events. Using Alternanthera philoxeroides (alligator weed) as an example, this study tested the hypotheses that physiological integration will improve growth and photosynthetic capacity of submerged ramets during submergence and will promote their recovery following de-submergence.

Methods

Connected clones of A. philoxeroides, each consisting of two ramet systems and a stolon internode connecting them, were grown under control (both ramet systems untreated), half-submerged (one ramet system submerged and the other not submerged), fully submerged (both ramet systems submerged), half-shaded (one ramet system shaded and the other not shaded) and full-shaded (both ramet systems shaded) conditions for 30 d and then de-submerged/de-shaded for 20 d. The submerged plants were also shaded to very low light intensities, mimicking typical conditions in turbid floodwater.

Key Results

After 30 d of submergence, connections between submerged and non-submerged ramets significantly increased growth and carbohydrate accumulation of the submerged ramets, but decreased the growth of the non-submerged ramets. After 20 d of de-submergence, connections did not significantly affect the growth of either de-submerged or non-submerged ramets, but de-submerged ramets had high soluble sugar concentrations, suggesting high metabolic activities. The shift from significant effects of integration on both submerged and non-submerged ramets during the submergence period to little effect during the de-submergence period was due to the quick recovery of growth and photosynthesis. The effects of physiological integration were not found to be any stronger under submergence/de-submergence than under shading/de-shading.

Conclusions

The results indicate that it is not just the beneficial effects of physiological integration that are crucial to the survival of riparian clonal plants during periods of submergence, but also the ability to recover growth and photosynthesis rapidly after de-submergence, which thus allows them to spread.  相似文献   
25.
Microcebus murinus, a small nocturnal Malagasy primate, exhibits adaptive energy-saving strategies such as daily hypothermia and gregarious patterns during diurnal rest. To determine whether ambient temperature (Ta), food restriction and nest sharing can modify the daily body temperature (Tb) rhythm, Tb was recorded by telemetry during winter in six males exposed to different ambient temperatures (Ta=25, 20, 15°C) and/or to a total food restriction for 3 days depending on social condition (isolated versus pair-grouped). At 25°C, the daily rhythm of Tb was characterized by high Tb values during the night and lower values during the day. Exposure to cold significantly decreased minimal Tb values and lengthened the daily hypothermia. Under food restriction, minimal Tb values were also markedly lowered. The combination of food restriction and cold induced further increases in duration and depth of torpor bouts, minimal Tb reaching a level just above Ta. Although it influenced daily hypothermia less than environmental factors, nest sharing modified effects of cold and food restriction previously observed by lengthening duration of torpor but without increasing its depth. In response to external conditions, mouse lemurs may thus adjust their energy expenditures through daily modifications of both the duration and the depth of torpor.  相似文献   
26.
Resource sharing among ramets in the clonal herb,Fragaria chiloensis   总被引:9,自引:0,他引:9  
P. Alpert  H. A. Mooney 《Oecologia》1986,70(2):227-233
Summary The herbaceous perennial, Fragaria chiloensis, reproduces vegetatively on coastal sand dunes in California by growth of stolons that bear rosettes. Movement of water and photosynthates through stolons integrates water and carbon metabolism of rosettes both before and after they root. New, unrooted rosettes import sufficient water and nitrogen to maintain levels near those of established rosettes; yet support of an unrooted rosette did not decrease growth of a connected, rooted sibling given abundant light, water, and soil nutrients. Under such conditions strings of unrooted rosettes with the associated stolon appeared self-sufficient for carbon; shade and drought induced import of photosynthates. New rosettes produced and maintained a limited root mass upon contact with dry sand, which could increase probability of establishment. Rooting did not induce senescence of stolons. Connection between two established rosettes prevented death by drought and shade, even when neither rosette could have survived singly. Results suggest that physiological integration of connected rosettes may increase total growth of clones of F. chiloensis through sharing of resources among ramets, especially when resource availability is changeable or patchy.  相似文献   
27.
Among heme-based sensors, recent phylogenomic and sequence analyses have identified 34 globin coupled sensors (GCS), to which an aerotactic or gene-regulating function has been tentatively ascribed. Here, the structural and biochemical characterization of the globin domain of the GCS from Geobacter sulfurreducens (GsGCS162) is reported. A combination of X-ray crystallography (crystal structure at 1.5 Å resolution), UV-vis and resonance Raman spectroscopy reveals the ferric GsGCS162 as an example of bis-histidyl hexa-coordinated GCS. In contrast to the known hexa-coordinated globins, the distal heme-coordination in ferric GsGCS162 is provided by a His residue unexpectedly located at the E11 topological site. Furthermore, UV-vis and resonance Raman spectroscopy indicated that ferrous deoxygenated GsGCS162 is a penta-/hexa-coordinated mixture, and the heme hexa-to-penta-coordination transition does not represent a rate-limiting step for carbonylation kinetics. Lastly, electron paramagnetic resonance indicates that ferrous nitrosylated GsGCS162 is a penta-coordinated species, where the proximal HisF8-Fe bond is severed.  相似文献   
28.
Herbaceous species possess several mechanisms to compensate for tissue loss. For clonal herbaceous species, clonal integration may be an additional mechanism. This may especially hold true when tissue loss is very high, because other compensatory mechanisms may be insufficient. On inland dunes in northern China, we subjected Bromus ircutensis and Psammochloa villosa ramets within 0.5 m×0.5 m plots to three clipping treatments, i.e., no clipping, moderate (50% shoot removal) and heavy clipping (90% shoot removal), and kept rhizomes at the plot edges connected or disconnected. Moderate clipping did not reduce ramet, leaf or biomass density of either species. Under moderate clipping, rhizome connection significantly improved the performance of Psammochloa, but not that of Bromus. Heavy clipping reduced ramet, leaf and biomass density in the disconnected plots of both species, but such negative effects were negated or greatly ameliorated when the rhizomes were connected. Therefore, clonal integration contributed greatly to the compensatory growth of both species. The results suggest that clonal integration is an additional compensatory mechanism for clonal plants and may be important for their long-term persistence in the heavily grazed regions in northern China.  相似文献   
29.
Sympatric cryptic lineages are a challenge for the understanding of species coexistence and lineage diversification as well as for management, conservation, and utilization of plant genetic resources. In higher plants studies providing insights into the mechanisms creating and maintaining sympatric cryptic lineages are rare. Here, using microsatellites and chloroplast sequence data, morphometric analyses, and phenological observations, we ask whether sympatrically coexisting lineages in the common wetland plant Juncus effusus are ecologically differentiated and reproductively isolated. Our results show two genetically highly differentiated, homoploid lineages within Jeffusus that are morphologically cryptic and have similar preference for soil moisture content. However, flowering time differed significantly between the lineages contributing to reproductive isolation and the maintenance of these lineages. Furthermore, the later flowering lineage suffered less from predispersal seed predation by a Coleophora moth species. Still, we detected viable and reproducing hybrids between both lineages and the earlier flowering lineage and Jconglomeratus, a coexisting close relative. Flowering time differentiation between the lineages can be explained by neutral divergence alone and together with a lack of postzygotic isolation mechanisms; the sympatric coexistence of these lineages is most likely the result of an allopatric origin with secondary contact.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号