首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2240篇
  免费   176篇
  国内免费   68篇
  2023年   13篇
  2022年   22篇
  2021年   17篇
  2020年   28篇
  2019年   61篇
  2018年   84篇
  2017年   51篇
  2016年   42篇
  2015年   64篇
  2014年   129篇
  2013年   154篇
  2012年   73篇
  2011年   126篇
  2010年   116篇
  2009年   135篇
  2008年   134篇
  2007年   149篇
  2006年   111篇
  2005年   126篇
  2004年   92篇
  2003年   71篇
  2002年   65篇
  2001年   49篇
  2000年   37篇
  1999年   44篇
  1998年   44篇
  1997年   49篇
  1996年   34篇
  1995年   38篇
  1994年   26篇
  1993年   29篇
  1992年   19篇
  1991年   16篇
  1990年   24篇
  1989年   17篇
  1988年   12篇
  1987年   11篇
  1986年   12篇
  1985年   18篇
  1984年   19篇
  1983年   15篇
  1982年   23篇
  1981年   14篇
  1980年   9篇
  1979年   17篇
  1978年   10篇
  1977年   6篇
  1976年   7篇
  1974年   7篇
  1973年   7篇
排序方式: 共有2484条查询结果,搜索用时 46 毫秒
91.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
92.
We investigated the spinning of hydroalcoholic chitosan solutions. The dope composition was optimized in order to obtain a continuous alcogel fiber by water evaporation on heating the extruded hydroalcoholic solution. This alcogel fiber was then neutralized in aqueous alkali baths and washed in water to eliminate the residual alcohol and salts before final drying. Depending on the alcohol content in the filament at the neutralization step, on specific alcohol–chitosan interactions and on the nature and concentration of the coagulation base, the process yielded semicrystalline chitosan fibers with different proportions of anhydrous and hydrated allomorphs. Contrarily to the classical annealing method, the formation of mainly anhydrous crystals was obtained without significant molecular weight decrease by neutralizing the polymer in hydrophobic conditions. The control of allomorph content was shown to be related to the hydrophobicity of the solvent (alcohol fraction) at the neutralization step.  相似文献   
93.
94.
Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3. Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K+ diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys2–His2 Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K+ diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.  相似文献   
95.
Abstract

The noncovalent interactions of phytate (Phy6-) with biogenic amines were studied potentiometrically in aqueous solution, at t= 25°C. Several species are formed in the different H+-Phy6--amine (A) systems, which have the general formula Ap(Phy)Hq(12-q)-, with p ≤ 3 and 6 ≤ q ≤ 10. The stability of these species is strictly dependent on the charges involved in the formation equilibria. For the equilibrium pHiAi+ + Hj(Phy)(12-j)- = Ap(Phy)Hq(12q)-, (q = pi + j)we found the relationship logK= aζ (ζ is the charge product of reactants), where a= 0.35(0.03, valid for all the amines; this roughly indicates an average free energy contribution per bond -ΔG0 = 4.0 ± 0.2 kJ mol-1. A slightly more sophisticated equation is also proposed for predicting the stability of these species. Owing to the quite high (partially protonated) phytate charge, the stability of Ap(Phy)Hq(12-q)- species is quite high, making phytate a strong amine sequestering agent in a wide pH range.  相似文献   
96.
An analytical and computational framework for the derivation of solitary solutions to biological systems describing the cooperation and competition of species and expressed by the system of Riccati equations coupled with multiplicative terms is presented in this paper. It is demonstrated that relationships between these solitary solutions can be either direct or inverse. Thus, an infinitesimal perturbation of one population would lead to an infinitesimal change in the other population – if only both solitary solutions are coupled with the direct relationship. But, in general, that is not true if solitary solutions are coupled with the inverse relationship – an infinitesimal perturbation of one population may result into a non-infinitesimal change in the other population. Necessary and sufficient conditions for the existence of solitary solutions are derived in the space of the system's parameters and initial conditions.  相似文献   
97.
It is shown that the performance of inverted organic solar cells can be significantly improved by facilitating the formation of a quasi‐ohmic contact via solution‐processed alkali hydroxide (AOH) interlayers on top of n‐type metal oxide (aluminum zinc oxide, AZO, and zinc oxide, ZnO) layers. AOHs significantly reduce the work function of metal oxides, and are further proven to effectively passivate defect states in these metal oxides. The interfacial energetics of these electron collecting contacts with a prototypical electron acceptor (C60) are investigated to reveal the presence of a large interface dipole and a new interface state between the Fermi energy and the C60 highest occupied molecular orbital for AOH‐modified AZO contacts. These novel interfacial gap states are a result of ground‐state electron transfer from the metal hydroxide‐functionalized AZO contact to the adsorbed molecules, which are hypothesized to be electronically hybridized with the contact. These interface states tail all the way to the Fermi energy, providing for a highly n‐doped (metal‐like) interfacial molecular layer. Furthermore, the strong “light‐soaking” effect is no longer observed in devices with a AOH interface.  相似文献   
98.
In this work, the detailed morphology studies of polymer poly(3‐hexylthiophene‐2,5‐diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all‐polymer solar cells. The in situ X‐ray scattering and optical interferometry and ex situ hard and soft X‐ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the ex situ grazing incidence X‐ray diffraction and soft X‐ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.  相似文献   
99.
Nanopatterned CuInGaS2 (CIGS) thin films synthesized by a sol‐gel‐based solution method and a nanoimprint lithography technique to achieve simultaneous photonic and electrical enhancements in thin film solar cell applications are demonstrated. The interdigitated CIGS nanopatterns in adjacent CdS layer form an ordered nanoscale heterojunction of optical contrast to create a light trapping architecture. This architecture concomitantly leads to increased junction area between the p‐CIGS/n‐CdS interface, and thereby influences effective charge transport. The electron beam induced current and capacitance–voltage characterization further supports the large carrier collection area and small depletion region of the nanopatterned CIGS solar cell devices. This strategic geometry affords localization of incident light inside and between the nanopatterns, where created excitons are easily dissociated, and it leads to the enhanced current generation of absorbed light. Ultimately, this approach improves the efficiency of the nanopatterned CIGS solar cell by 55% compared to its planar counterpart, and offers the possibility of simultaneous management for absorption and charge transport through a nanopatterning process.  相似文献   
100.
Sample preparation, typically by in‐solution or in‐gel approaches, has a strong influence on the accuracy and robustness of quantitative proteomics workflows. The major benefit of in‐gel procedures is their compatibility with detergents (such as SDS) for protein solubilization. However, SDS‐PAGE is a time‐consuming approach. Tube‐gel (TG) preparation circumvents this drawback as it involves directly trapping the sample in a polyacrylamide gel matrix without electrophoresis. We report here the first global label‐free quantitative comparison between TG, stacking gel (SG), and basic liquid digestion (LD). A series of UPS1 standard mixtures (at 0.5, 1, 2.5, 5, 10, and 25 fmol) were spiked in a complex yeast lysate background. TG preparation allowed more yeast proteins to be identified than did the SG and LD approaches, with mean numbers of 1979, 1788, and 1323 proteins identified, respectively. Furthermore, the TG method proved equivalent to SG and superior to LD in terms of the repeatability of the subsequent experiments, with mean CV for yeast protein label‐free quantifications of 7, 9, and 10%. Finally, known variant UPS1 proteins were successfully detected in the TG‐prepared sample within a complex background with high sensitivity. All the data from this study are accessible on ProteomeXchange (PXD003841).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号