首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9633篇
  免费   1512篇
  国内免费   2653篇
  13798篇
  2024年   113篇
  2023年   370篇
  2022年   310篇
  2021年   296篇
  2020年   545篇
  2019年   541篇
  2018年   627篇
  2017年   574篇
  2016年   577篇
  2015年   549篇
  2014年   596篇
  2013年   713篇
  2012年   473篇
  2011年   585篇
  2010年   411篇
  2009年   541篇
  2008年   519篇
  2007年   543篇
  2006年   507篇
  2005年   416篇
  2004年   375篇
  2003年   370篇
  2002年   376篇
  2001年   307篇
  2000年   268篇
  1999年   254篇
  1998年   211篇
  1997年   175篇
  1996年   174篇
  1995年   165篇
  1994年   175篇
  1993年   133篇
  1992年   143篇
  1991年   97篇
  1990年   91篇
  1989年   86篇
  1988年   70篇
  1987年   62篇
  1986年   56篇
  1985年   78篇
  1984年   51篇
  1983年   30篇
  1982年   66篇
  1981年   38篇
  1980年   35篇
  1979年   23篇
  1978年   22篇
  1977年   11篇
  1976年   20篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
对宿县夹沟地区跨寒武系与奥陶系的三山子组的碳、氧同位素和微量元素地球化学的研究表明,寒武-奥陶系界线附近有δ^13C和δ^18O的负异常,亲铁元素、亲铜元素的正异常。这些异常与生物群面貌的变化在时间上是同步的。据此认为研究区在寒武纪末可能存在灾变事件。同时,考虑到寒武纪末和奥陶纪初生物群面貌的重大差异,综合国内,外有关研究,认为寒武纪末期可能存在全球性的重大地质事件。  相似文献   
132.
Kinetics of microbial growth with mixtures of carbon sources   总被引:11,自引:0,他引:11  
  相似文献   
133.
The effect of carbon dioxide concentration on the bacterial leaching of a pyrite-arsenopyrite ore concentrate was studied in continuous-flow reactors. Steady-state operation with two feed slurry densities, 6 wt% and 16 wt% solids, were tested for the effect of carbon dioxide concentration. Bacterial growth rates were estimated via the measurement of carbon dioxide consumption rates. Aqueous-phase carbon dioxide concentrations in excess of 10 mg/L were found to be inhibitory to bacterial growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   
134.
Conventional gravimetry and a combination of gravimetry and respirometry were compared for their precision in measuring respiration and metabolic efficiency of growth of final stadiumPieris brassicae L. (Pieridae, Lepidoptera) caterpillars. This was done both for caterpillars feeding on an artificial diet and for caterpillars feeding on excised leaf material of a host plant,Brassica oleracea L. Gravimetry produced significantly greater variation in the total amount of matter respired and the metabolic efficiency than indirect calorimetry for caterpillars feeding on plant material, while the two methods gave similar results for the caterpillars reared on a meridic artificial diet. Respirometry (indirect calorimetry) revealed that caterpillars feeding on the artificial diet were growing with a higher metabolic efficiency than caterpillars feeding on the host plant. This difference was not revealed by conventional gravimetry. It is argued that metabolic efficiencies as derived from gravimetric budget calculations are subject to a number of random errors that distort precise determination of metabolic efficiencies in studies involving plant food.  相似文献   
135.
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.  相似文献   
136.
Changes in soil organic carbon (SOC) storage have the potential to affect global climate; hence identifying environments with a high capacity to gain or lose SOC is of broad interest. Many cross-site studies have found that SOC-poor soils tend to gain or retain carbon more readily than SOC-rich soils. While this pattern may partly reflect reality, here we argue that it can also be created by a pair of statistical artifacts. First, soils that appear SOC-poor purely due to random variation will tend to yield more moderate SOC estimates upon resampling and hence will appear to accrue or retain more SOC than SOC-rich soils. This phenomenon is an example of regression to the mean. Second, normalized metrics of SOC change—such as relative rates and response ratios—will by definition show larger changes in SOC at lower initial SOC levels, even when the absolute change in SOC does not depend on initial SOC. These two artifacts create an exaggerated impression that initial SOC stocks are a major control on SOC dynamics. To address this problem, we recommend applying statistical corrections to eliminate the effect of regression to the mean, and avoiding normalized metrics when testing relationships between SOC change and initial SOC. Careful consideration of these issues in future cross-site studies will support clearer scientific inference that can better inform environmental management.  相似文献   
137.
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m−2 year−1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.  相似文献   
138.
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2-induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2-induced higher foliage area.  相似文献   
139.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   
140.
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号