首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9627篇
  免费   1321篇
  国内免费   5848篇
  2024年   114篇
  2023年   395篇
  2022年   439篇
  2021年   516篇
  2020年   645篇
  2019年   744篇
  2018年   689篇
  2017年   685篇
  2016年   641篇
  2015年   640篇
  2014年   638篇
  2013年   789篇
  2012年   649篇
  2011年   615篇
  2010年   535篇
  2009年   698篇
  2008年   617篇
  2007年   712篇
  2006年   610篇
  2005年   571篇
  2004年   523篇
  2003年   508篇
  2002年   397篇
  2001年   366篇
  2000年   366篇
  1999年   341篇
  1998年   274篇
  1997年   240篇
  1996年   236篇
  1995年   224篇
  1994年   207篇
  1993年   151篇
  1992年   151篇
  1991年   120篇
  1990年   135篇
  1989年   116篇
  1988年   94篇
  1987年   65篇
  1986年   65篇
  1985年   42篇
  1984年   42篇
  1983年   17篇
  1982年   57篇
  1981年   24篇
  1980年   25篇
  1979年   25篇
  1978年   10篇
  1977年   10篇
  1973年   6篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
We evaluated the performance of Coptera haywardi (Ogloblin) (Diapriidae) and Pachycrepoideus vindemiae (Rondani) (Pteromalidae), both hymenopteran pupal parasitoids of Anastrepha spp. (Diptera: Tephritidae). Performance was studied by manipulating the following environmental conditions in the laboratory: (1) soil type, (2) soil moisture content, (3) soil compaction, and (4) depth at which pupae were buried in the soil. There were two experiments: in the first, exposure time of pupae was held constant and in the second, it varied. In the first experiment, C. haywardi was significantly more effective than P. vindemiae in parasitizing fly pupae. With exposure time held constant (36 h), only soil type and pupal burial depth were significantly related to parasitism rates. While P. vindemiae only parasitized pupae located on the soil surface, C. haywardi attacked pupae that were buried up to 5 cm deep, performing better in clayey than in loamy soil. In the second experiment, exposure time (24, 36, 48, and 72 h) had no significant effect on parasitism rates, but soil type did. P. vindemiae again only attacked pupae on the soil surface while C. haywardi was also able to parasitize pupae that were buried up to 5 cm deep. We conclude that C. haywardi represents a viable candidate to replace the environmentally unfriendly P. vindemiae in augmentative biological control programs against fruit flies.  相似文献   
22.
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m?2 y?1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m?2 y?1 and 33.2 g C m?2 y?1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.  相似文献   
23.
This paper deals with the complex issue of reversing long‐term improvements of fertility in soils derived from heathlands and acidic grasslands using sulfur‐based amendments. The experiment was conducted on a former heathland and acid grassland in the U.K. that was heavily fertilized and limed with rock phosphate, chalk, and marl. The experimental work had three aims. First, to determine whether sulfurous soil amendments are able to lower pH to a level suitable for heathland and acidic grassland re‐creation (approximately 3 pH units). Second, to determine what effect the soil amendments have on the available pool of some basic cations and some potentially toxic acidic cations that may affect the plant community. Third, to determine whether the addition of Fe to the soil system would sequester PO4? ions that might be liberated from rock phosphate by the experimental treatments. The application of S0 and Fe(II)SO4? to the soil was able to reduce pH. However, only the highest S0 treatment (2,000 kg/ha S) lowered pH sufficiently for heathland restoration purposes but effectively so. Where pH was lowered, basic cations were lost from the exchangeable pool and replaced by acidic cations. Where Fe was added to the soil, there was no evidence of PO4? sequestration from soil test data (Olsen P), but sequestration was apparent because of lower foliar P in the grass sward. The ability of the forb Rumex acetosella to apparently detoxify Al3+, prevalent in acidified soils, appeared to give it a competitive advantage over other less tolerant species. We would anticipate further changes in plant community structure through time, driven by Al3+ toxicity, leading to the competitive exclusion of less tolerant species. This, we suggest, is a key abiotic driver in the restoration of biotic (acidic plant) communities.  相似文献   
24.
Periphytic communities in running waters were examined as they developed on granite rocks, concrete balls and glass slides. At equivalent cell densities, no differences in pigment concentrations, species diversity or production levels were found among the different substrata examined. Development of the assemblage appeared to result from the elongation of short algal filaments which had initially settled on the surface. As these communities matured, a distinct canopy and understory developed. Cellular metabolisms were comparable among the communities. In the understory of the communities, even though the cellular content of chl a and b did not differ, chl c and carotenoid pigment concentrations were higher than those in the over-story. Bicarbonate assimilation of Tabellaria fenestrata (Lyng.) Külz. and Eunotia pectinalisi var. pectinalis (O. F. Müll?) Rabh. was higher than that of the more abundant Tabellaria flocculosa (Roth.)Kütz. var. flocculosa IV (sensu Koppen) at both high and low cell densities. This probably reflects a seasonal succession of colonizing species. Glucose assimilation appeared to be mainly attributable to bacterial activity, and algal cells of the upper layer were less active than those of the bottom. The small amount of glucose that was incorporated by the algal cells was probably absorbed passively since its amount was in direct proportion to cell volumes.  相似文献   
25.
The trophic impact of small mammals in successional grasslands   总被引:1,自引:0,他引:1  
The habitat use and diets of small mammals inhabiting grassland plots of different successional ages were investigated by live-trapping and faecal analysis over a period of 16 months. The contribution of the major plant life forms and the structural profile of the vegetation of each plot and the availability of insect prey were assessed. The dominant species of small mammal found on each plot were Sorex araneus, S. minutus, Apodemus sylvaticus and Microtus agrestis . Small mammals were most commonly found in the late and mid-successional stages, reflecting the habitat structure and food availability. A wide range of insects and other invertebrates were eaten by all four species and insects formed 50–62% of the animal prey taken. The incidence of certain prey in the diets differed between plots. The daily consumption rate of invertebrates by shrews and mice was estimated at some 6800 prey per ha. The greatest predatory impact came from shews but A. sylvaticus showed increased consumption of invertebrates in spring. The combined predatory impact of the grassland small mammal community on insect populations alone was estimated to average 0.01% per day and is predicted to be greatest in the mid-successional stages.  相似文献   
26.
Summary The effects of spring grazing by sheep and of natural levels of insect herbivory were studied in 1985 on a limestone field abandoned from arable land for four years. A split-plot design was adopted in which paddocks, arranged in Latin squares, were either left ungrazed or heavily grazed by sheep for ten days in April. Within each paddock plots were either sprayed regularly with Malathion-60 or untreated.Natural levels of insect herbivory, compared to the reduced levels in insecticide-treated plots, had effects of similar magnitude to those from the short burst of spring grazing. Many attributes of the grazed/insecticide-treated sward were either increased or decreased by a factor of two within a season. Both types of herbivore caused changes in the direction of plant succession as well as in its rate. Effects on early successional species were large and similar when caused by either type of herbivore. Effects on later successional species were often smaller, but also showed differences in the action of the two herbivore types, as did effects on sward height, species richness and total cover. The effects of sheep and insect herbivory were not always additive or in the same direction.The results suggest that manipulations of both mammal and insect herbivores may be powerful tools for directing changes in plant community composition.  相似文献   
27.
Emergence and growth of barley was severely decreased by short periods (less than 24 hours) of pre-emergence waterlogging at 20°C. The extent of damage depended on a combination of duration of waterlogging, soil water potential and aggregate size. Potentials of less than—4kPa prevented loss of plants developing in aggregates of less than 2 mm diameter after a transitory period of waterlogging although some shoot and root damage occurred. By comparison seeds growing in soil consisting of aggregates greater than 2 mm in diameter were not damaged by transitory waterlogging even when drainage only occurred at−0.8kPa. The severity of damage increased with the period of waterlogging. A criterion obtained as the product of mean size grade and water potential gave a single value (−4NM−1) below which emergence was satisfactory. Waterlogging halfway through germination gave more severe damage than near sowing date or near emergence.  相似文献   
28.
The fate of15N labeled nitrogen applied to mature citrus trees   总被引:1,自引:0,他引:1  
Summary The efficiency and balance of nitrogen from one year's application was studied in a long-term fertigation experiment. Enriched nitrogen fertilizer, K15NO3, was applied to a 22-year-old Shamouti orange tree with a history of high N applications (N3) and to an N-starved tree (N1). The distribution of N in the different parts of the trees and in the soil was determined after the experimental trees were excavated. Similar total recovery of the labeled fertilizer N was found in the trees and soil in both treatments (N1−61.7% N3−56%). However, the distribution between tree and soil was different. The amount of recovered residual fertilizer in the soil was much larger in the N3 treatment than in N1. The highest percentage of fertilizer N was found in the new organs,i.e. fruits, twigs and leaves. The roots and branches took up only 6–14% from the labeled fertilizer. Only 20.9% of the leaf N and 23.4% of the fruit N in the N3 tree originated in the labeled fertilizer, indicating translocation of N from older parts of the tree to new growth. Evidence was found of storage of N in the wooded branches, while the roots contained a surprisingly small part of labeled fertilizer. Contribution 1599E.  相似文献   
29.
The N2O flux from the surface of grass-covered pots was only significant following grass maturing. Removal of the above-ground plant material resulted in an immediate and long-lasting increase in N2O production in the soil. The results suggest that easily available organic matter from the roots stimulates the denitrification when the plants are damaged. Grass cutting might therefore result in a marked nitrogen loss through denitrification. The quantitative effect was equal in soil with and without succinate added. The size of the anaerobic zone around the roots is therefore sufficient to allow for denitrification activity mediated by increased organic matter availability because of plant cutting.  相似文献   
30.
For three acid soils from Santa Catarina, Brazil, lime application and time of incubation with lime had little effect on the adsorption of added phosphorus. In two soils with high contents of exchangeable aluminium, solution P and isotopically exchangeable P were decreased by incubating with lime for 1 month: phosphorus was probably adsorbing on freshly precipitated aluminium hydrous oxides. In one soil with less exchangeable aluminium, P in solution was increased by liming. After 23 months lime increased solution and exchangeable P possibly due to crystallization of aluminium hydrous oxides reducing the number of sites for P adsorption. All these changes were however small. In a pot experiment, lime and phosphorus markedly increased barley shoot and root dry matter and P uptake. Although liming reduced P availability measured by solution P, isotopically exchangeable P and resin extractable P, it increased phosphorus uptake by reducing aluminium toxicity and promoting better root growth. The soil aluminium saturation was reduced by liming, but the concentration of aluminium in roots changed only slightly. The roots accumulated aluminium without apparently being damaged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号