首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9945篇
  免费   1271篇
  国内免费   5804篇
  17020篇
  2024年   132篇
  2023年   431篇
  2022年   479篇
  2021年   534篇
  2020年   655篇
  2019年   768篇
  2018年   721篇
  2017年   711篇
  2016年   657篇
  2015年   649篇
  2014年   693篇
  2013年   859篇
  2012年   659篇
  2011年   637篇
  2010年   546篇
  2009年   714篇
  2008年   620篇
  2007年   718篇
  2006年   610篇
  2005年   574篇
  2004年   513篇
  2003年   493篇
  2002年   391篇
  2001年   352篇
  2000年   326篇
  1999年   330篇
  1998年   252篇
  1997年   237篇
  1996年   243篇
  1995年   216篇
  1994年   202篇
  1993年   145篇
  1992年   130篇
  1991年   111篇
  1990年   120篇
  1989年   110篇
  1988年   86篇
  1987年   65篇
  1986年   53篇
  1985年   47篇
  1984年   45篇
  1983年   14篇
  1982年   56篇
  1981年   27篇
  1980年   28篇
  1979年   23篇
  1978年   7篇
  1977年   6篇
  1975年   6篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The sustainable management of unwanted vegetation in agricultural fields through integrated weed control strategies requires detailed knowledge about the maternal formation of primary seed dormancy, to support the prediction of seedling emergence dynamics. This knowledge is decisive for the timing of crop sowing and nonchemical weed control measures. Studies in controlled environments have already demonstrated that thermal conditions and, to some extent, water availability during seed set and maturation has an impact on the level of dormancy. However, it is still unclear if this applies also under field conditions, where environmental stressors and their timing are more variable. We address this question for Alopecurus myosuroides in south‐western Sweden. We quantified the effects of cumulated temperature and precipitation as well as soil water potential during the reproductive growth phase of A myosuroides on primary seed dormancy under field conditions. Empirical models differing in focal time intervals and, in case of soil water potential, focal soil depths were compared regarding their predictive power. The highest predictive power for the level of primary dormancy of A. myosuroides seeds was found for a two‐factorial linear model containing air temperature sum between 0 and 7 days before peak seed shedding as well as the number of days with soil water potential below field capacity between 7 and 35 days before peak seed shedding. For soil water potential, it was found that only the top 10 cm soil layer is of relevance, which is in line with the shallow root architecture of A. myosuroides. We conclude that for this species the level of dormancy depends on the magnitude and timing of temperature and water availability during the reproductive growth phase. Water availability appears to be more important during maternal environmental perception and temperature during zygotic environmental perception.  相似文献   
992.
Xikuangshan is located in Lengshuijiang City, Hunan province, China. With intensive mining and metallurgical activities, large amounts of tailing containing heavy metals (in this study, the term “heavy metals” is used for both metals and metalloids) were introduced to the soils around the mine area. Those heavy metals including antimony and other heavy metals would pose huge risk to human health and ecological environment. With a view to providing information on the extent of contamination and potential ecological risk of heavy metals in the soils of this mine area, the total contents of antimony (Sb), manganese (Mn), zinc (Zn), arsenic (As), cadmium (Cd), and lead (Pb) in the soils were examined. The results revealed that the predominant pollutants in this area were Sb, Cd, and Zn with mean concentrations being 356.58, 9.98, and 486.42 mg kg?1, 119.66, 117.41, and 5.17 times of the corresponding background values respectively. The pollution indices (Ps) indicated that the pollution levels of all sampling zones were serious including the control zones. The ecological risk levels of all heavy metals were very high on all the sampling zones except sampling zone 7 (as considerable), and Sb, Cd, and As were regarded as making great contribution to the risk indices (RI).  相似文献   
993.
In order to evaluate the combined effects of drip irrigation and petroleum extraction activities on As contamination and distribution in local soils, a total of 141 soil and 30 groundwater (GW) samples from field sites drip-irrigated with GW in Kuitun, Xinjiang, China were collected and analyzed arsenic (As) levels. Soil As levels ranged from 6.74 to 23.10 mg·kg?1. For the field irrigated with As-loaded GW for 0.5-10 years, As levels in soils increased by 0.50-9.10 mg·kg?1 as compared with the control soils. As levels in all top-layer (0-10 cm in thickness) irrigated soils A (0-5 cm away from dripper) were found to be higher than those in top-layer irrigated soils B (5-10 cm away from dripper). It was estimated that As in agricultural soils increased by approximately 11~3789 g·yr?1·ha?1 under drip irrigating, most of which in top-layer soils covering the plant roots. The widely used drip irrigation system in Kuitun enhanced the ecological and human-health threats of As via affecting its spread into soils. Furthermore, the petroleum exploiting activity further promoted As levels in local soils. Within a distance of 10~1000 m away from petroleum exploiting sites, the soil As level decreases significantly with the distance.  相似文献   
994.
Temperature sensitivity of soil organic carbon (SOC) decomposition is one of the major uncertainties in predicting climate‐carbon (C) cycle feedback. Results from previous studies are highly contradictory with old soil C decomposition being more, similarly, or less sensitive to temperature than decomposition of young fractions. The contradictory results are partly from difficulties in distinguishing old from young SOC and their changes over time in the experiments with or without isotopic techniques. In this study, we have conducted a long‐term field incubation experiment with deep soil collars (0–70 cm in depth, 10 cm in diameter of PVC tubes) for excluding root C input to examine apparent temperature sensitivity of SOC decomposition under ambient and warming treatments from 2002 to 2008. The data from the experiment were infused into a multi‐pool soil C model to estimate intrinsic temperature sensitivity of SOC decomposition and C residence times of three SOC fractions (i.e., active, slow, and passive) using a data assimilation (DA) technique. As active SOC with the short C residence time was progressively depleted in the deep soil collars under both ambient and warming treatments, the residences times of the whole SOC became longer over time. Concomitantly, the estimated apparent and intrinsic temperature sensitivity of SOC decomposition also became gradually higher over time as more than 50% of active SOC was depleted. Thus, the temperature sensitivity of soil C decomposition in deep soil collars was positively correlated with the mean C residence times. However, the regression slope of the temperature sensitivity against the residence time was lower under the warming treatment than under ambient temperature, indicating that other processes also regulated temperature sensitivity of SOC decomposition. These results indicate that old SOC decomposition is more sensitive to temperature than young components, making the old C more vulnerable to future warmer climate.  相似文献   
995.
Seed dispersal is a key process in plant community dynamics, and soil seed banks represent seed dispersal in time rather than in space. Despite their potential importance, seed bank dynamics in the Arctic are poorly understood. We investigated soil seed banks and corresponding plant community composition in three contrasting vegetation types in West Greenland, viz. dwarf shrub heaths, herb slopes and fell‐fields. Through germination testing, 31 species were documented in soil seed banks. All of these were herbaceous, while no dwarf‐shrub species, which represents the dominating growth form in the above‐ground vegetation, were emerging from the seed bank. Consequently, across vegetation types, the lowest similarity between seed bank and above‐ground vegetation was found in dwarf shrub heath. Nine plant species were exclusively found in seed bank, all of which were non‐clonal forbs. Seed bank size (total number of seeds) and species richness seemed to increase with the level of natural disturbance. Additionally, we examined the effect of different experimental light and temperature conditions on the quantity and diversity of germinating seeds. The difference in diversity in vegetation and seed bank at the species level will impact population dynamics, regeneration of vegetation after disturbances and its potential to respond to climate change.  相似文献   
996.
Soil seed bank is an important source of resilience of plant communities who suffered disturbances. We analysed the effect of an intense fire in the soil seed bank of a semi‐arid shrubland of Córdoba Argentina. We asked if the fire affected seed abundance, floristic and functional composition of the soil seed bank at two different layers (0–5 cm and 5–10 cm), and if fire could compromise the role of the soil seed bank as a source of resilience for the vegetation. We collected soil samples from a burned site and from a control site that had not burned. Samples were installed in a greenhouse under controlled conditions. During 12 months, we recorded all germinated seedlings. We compare soil seed bank with pre‐fire vegetation in terms of floristic and functional composition. The high‐intensity fire deeply affected the abundance of seeds in the soil, but it did not affect its floristic or functional composition. Floristic and functional composition of soil seed banks – at burned and unburned sites‐ differed markedly from that of the pre‐fire vegetation, although a previous study at the same site indicated high resilience after fire of this plant community. Our results indicate that resilience of this system is not strongly dependent on direct germination from seeds buried in the soil. Other sources of resilience, like colonization from neighbouring vegetation patches and resprouting from underground organs appear to gain relevance after an intense fire.  相似文献   
997.
Abstract

Cadmium (Cd) contamination is one of the most serious global environmental problems, and phytoremediation, which uses Cd-accumulator plants, is potentially one of the sustainable solutions. Pot experiments with natural and Cd-amended soils were conducted to investigate the accumulation of heavy metals in 10 leading cultivars of tobacco in China. The extraction ability and profiles of Cd accumulation among plant organs were also analyzed. The tobacco roots accumulated cobalt, nickel, and Cd, while the leaf highly bioaccumulated Cd and lowly accumulated zinc, selenium and mercury. The transport from the tobacco stem to the leaf plays a critical role in the accumulation of these elements. The ratios of Cd concentration in the leaves at lower, middle and upper positions were comparatively stable. The high Cd-extracting cultivars were “Hongda”, “NC89” and “Zhongyan 100” when grown in normal soils, “CuiBi 1” and “Hongda” in moderately contaminated soils, and “YuYan 87”, “LongJiang 851” and “K326” in severely contaminated soils. Tobacco leaves could accumulate about 80% of the total Cd extracted from the soil by the plant. Considering the Cd-extraction limitations exhibited by leading tobacco cultivars, screening of germplasm resources for high or low levels of Cd-accumulation is still an important target for the future.  相似文献   
998.
为科学认识科尔沁沙地优势固沙灌木的生态适应性和固沙植被演变规律, 该研究对科尔沁沙地流动沙丘、半固定沙丘、固定沙丘和丘间低地的优势固沙灌木小叶锦鸡儿(Caragana microphylla)和盐蒿(Artemisia halodendron)进行野外调查, 研究了这两种固沙灌木的叶片氮(N)、磷(P)化学计量特征、灌丛土壤养分状况以及内稳性特征。结果表明: 1)与盐蒿相比, 灌木小叶锦鸡儿具有较高的叶片N含量及N:P, 而P含量仅为盐蒿的1/2; 2)两种优势固沙灌木灌丛下土壤的全N、全P含量及速效N、速效P含量高于该地区土壤的平均水平, 小叶锦鸡儿灌丛下土壤养分含量显著高于盐蒿灌丛下土壤; 3)盐蒿叶片N、P化学计量内稳性指数(H)表现为HP > HN:P > HN, 说明盐蒿更易受土壤N的限制; 小叶锦鸡儿叶片N、P化学计量内稳性指数表现为HN:P > HN > HP, 意味着小叶锦鸡儿更易受土壤P的限制。在N含量较低的沙化草地, HN较高的固沙灌木小叶锦鸡儿比盐蒿更具生长优势, 对于该地区生态恢复及保护具有不可替代的作用。然而, 小叶锦鸡儿额外吸收的N, 使其生长过程可能易受P的限制, 因此在沙地恢复过程中应注意土壤P的供应。  相似文献   
999.
刘君  王宁  崔岱宗  卢磊  赵敏 《生物多样性》2019,27(8):911-36
土壤细菌是森林生态系统的一个重要组成成分, 是生态系统中物质循环和能量流动的重要参与者, 细菌群落组成和生物多样性是反映土壤生态功能的重要指标。本文利用高通量测序技术分析了大亮子河国家森林公园内红松(Pinus koraiensis)林、落叶松(Larix gmelinii)林、蒙古栎(Quercus mongolica)林、枫桦(Betula costata)林、针阔混交林、灌木林和草甸等7种不同生境土壤细菌群落组成和多样性的差异性, 探讨该地区土壤细菌群落对不同生境的响应, 为地区森林生态系统的经营管理及生态系统稳定性的维护提供科学理论基础。在门的水平上, 各生境的细菌群落组成基本一致, 其中变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)和疣微菌门(Verrucomicrobia)在7种生境土壤中相对丰度均大于10.0%, 是细菌中的优势菌门。在属的水平上, 共测得245个菌属, 各样地共有属118个, 占总属数的48.2%, 占总相对丰度的97.8%; 优势菌属分别为Spartobacteria_ genera_incertae_sedisGaiellaGp16Gp4, 占总相对丰度的47.0%, Spartobacteria_genera_incertae_sedis在7种生境土壤中丰度均最高。7种生境下的土壤细菌多样性和土壤理化因子存在着显著的差异, 红松林的土壤细菌群落多样性和丰富度均高于其他生境。土壤pH是大亮子河森林公园影响土壤细菌多样性的关键因子。  相似文献   
1000.
Changes in labile carbon (LC) pools and microbial communities are the primary factors controlling soil heterotrophic respiration (Rh) in warming experiments. Warming is expected to initially increase Rh but studies show this increase may not be continuous or sustained. Specifically, LC and soil microbiome have been shown to contribute to the effect of extended warming on Rh. However, their relative contribution is unclear and this gap in knowledge causes considerable uncertainty in the prediction of carbon cycle feedbacks to climate change. In this study, we used a two‐step incubation approach to reveal the relative contribution of LC limitation and soil microbial community responses in attenuating the effect that extended warming has on Rh. Soil samples from three Tibetan ecosystems—an alpine meadow (AM), alpine steppe (AS), and desert steppe (DS)—were exposed to a temperature gradient of 5–25°C. After an initial incubation period, soils were processed in one of two methods: (a) soils were sterilized then inoculated with parent soil microbes to assess the LC limitation effects, while controlling for microbial community responses; or (b) soil microbes from the incubations were used to inoculate sterilized parent soils to assess the microbial community effects, while controlling for LC limitation. We found both LC limitation and microbial community responses led to significant declines in Rh by 37% and 30%, respectively, but their relative contributions were ecosystem specific. LC limitation alone caused a greater Rh decrease for DS soils than AMs or ASs. Our study demonstrates that soil carbon loss due to Rh in Tibetan alpine soils—especially in copiotrophic soils—will be weakened by microbial community responses under short‐term warming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号