首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8557篇
  免费   1178篇
  国内免费   5665篇
  2024年   112篇
  2023年   381篇
  2022年   449篇
  2021年   500篇
  2020年   606篇
  2019年   716篇
  2018年   671篇
  2017年   670篇
  2016年   622篇
  2015年   616篇
  2014年   610篇
  2013年   753篇
  2012年   619篇
  2011年   567篇
  2010年   494篇
  2009年   649篇
  2008年   582篇
  2007年   634篇
  2006年   537篇
  2005年   499篇
  2004年   446篇
  2003年   444篇
  2002年   341篇
  2001年   309篇
  2000年   291篇
  1999年   290篇
  1998年   216篇
  1997年   210篇
  1996年   212篇
  1995年   192篇
  1994年   175篇
  1993年   137篇
  1992年   124篇
  1991年   103篇
  1990年   106篇
  1989年   108篇
  1988年   74篇
  1987年   58篇
  1986年   55篇
  1985年   34篇
  1984年   36篇
  1983年   10篇
  1982年   47篇
  1981年   22篇
  1980年   24篇
  1979年   20篇
  1978年   5篇
  1975年   4篇
  1973年   5篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
991.
Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.  相似文献   
992.
Enhanced phytoextraction using EDTA for the remediation of an agricultural soil contaminated with less mobile risk elements Cd and Pb originating from smelting activities in Príbram (Czech Republic) was assessed on the laboratory and the field scale. EDTA was applied to the first years crop Zea mays. Metal mobilization and metal uptake by the plants in the soil were monitored for two additional years when Triticum aestivum was planted. The application ofEDTA effectively increased water-soluble Cd and Pb concentrations in the soil. These concentrations decreased over time. Anyhow, increased concentrations could be still observed in the third experimental year indicating a low possibility of groundwater pollution after the addition of EDTA during and also after the enhanced phytoextraction process under prevailing climatic conditions. EDTA-applications caused phytotoxicity and thereby decreased biomass production and increased Cd and Pb uptake by the plants. Phytoextraction efficiency and phytoextraction potential were too low for Cd and Pb phytoextraction in the field in a reasonable time frame (as less than one-tenth of a percent of total Cd and Pb could be removed). This strongly indicates that EDTA-enhanced phytoextraction as implemented in this study is not a suitable remediation technique for risk metal contaminated soils.  相似文献   
993.
A field study on phytoremediation of hydrocarbon contaminated soil was designed to assess the effects of organic manures (poultry droppings and cassava peels) and NPK fertilization on the potentials of cowpea (Vigina unguiculata) and maize (Zea mays) to stimulate hydrocarbon degradation in soil. Cowpea and maize crops were established on the hydrocarbon contaminated soil amended with three rates (0, 4, and 8 ton/ha) of the soil amendments, and arranged in 3 x 3 x 3 factorial in Randomized Complete Block Design. Hydrocarbon was significantly (P < 0.05) reduced in plots treated with the combined forms of the soil amendments. While the treatment combinations of 8 t/ha Poultry Droppings (PD) + 8 t/ha Cassava Peels (CP) + 4 t/ha NPK fertilizer was optimal for hydrocarbon degradation in the cowpea plots, 4 t/ha PD + 8 t/ha CP + 8 t/ha NPK fertilizer was the most preferred in the maize plot. Cowpea showed greater potential for hydrocarbon degradation at the first year. The mean values of hydrocarbon concentrations at the cowpea and maize plots indicated no significant difference at the second year. Grain yield of cowpea increased by 87% at the second year, while maize was unable to grow to maturity in the first year.  相似文献   
994.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   
995.
The aim of this study was to evaluate anthracene removal using activated soil reactors, previously inoculated, under both aerobic and anaerobic conditions. In the reactors, the soil was maintained at 60% moisture (weight basis), room temperature, in the dark, and under constant agitation at 100 rpm. Two experiments were run during and after acclimatization to evaluate anthracene removal under both aerobic and anaerobic conditions. The first one took place during inoculum acclimatization using three different concentrations of anthracene (50, 100, and 500 mg anthracene/L per day) during 90 days. The second experiment took place after acclimatization (during 132 days). The results of anthracene removal were compared with controls in which no additional inoculum was added. During the two experiments, the behavior of pH, chemical oxygen demand (COD), and biogas production was evaluated. Results indicate that the bacterial community adapted for removal of anthracene became enriched through the acclimatization process. Anthracene biodegradation occurred in the soil model with both types of reactors (aerobic and anaerobic), but the rates and extent of biodegradation in the aerobic reactor were higher (95%) than those in anaerobic conditions (74%). Microbial activity also contributed to enhancing bioremediation in the soil by reducing anthracene sorption.  相似文献   
996.
Soil contamination by organochlorine pesticides or PCBs is almost undocumented for Iran. Here we report a soil survey in Mazandaran and Guilan provinces that hold >30% of the agricultural areas of Iran where pesticide use is widespread. Concentration of DDTs, HCHs, cyclodienes, and PCBs were measured in 45 soil samples from different agricultural land uses and forest land. The average concentrations of ∑DDT (37 μg kg?1) and ∑HCH (21 μg kg?1) in agricultural soils are among the largest ever reported and exceed international soil screening standards. All residues were larger in agricultural than in forest soil. Within agricultural land, ∑DDT were largest for tea gardens, lindane was largest in rice fields, and cyclodiens largest in citrus orchards. The ratio of (DDD + DDE)/DDT is an index of the extent of DDT degradation in soil and was lower in tea gardens than in other soils (0.7 versus 2–5), indicating either ongoing DDT input or lower degradation rate in the tea gardens that are more acid than the other soils (pH 4.5 versus 6.5–7.0). The o,p′–DDT/p,p′–DDT ratio was about 3 in forest soils, suggesting that DDT is derived from dicofol application and not from technical DDT as in agricultural soils. The PCB 28, 180, and 138 showed the highest mean concentration compared with other PCB congeners in all land uses. This survey is the first of this kind for Iran and illustrates that concentrations of organochlorine pesticide in soil are relatively large.  相似文献   
997.
To control the dissolved reactive phosphorus (DRP) concentration in a soil solution, a number of soil amendments were tested. In the current study, Blast Furnace Slag (BFS) and Water Treatment Residues (WTR) were tested on bare soil under two rainfall intensities and two soil roughness levels. The soil was fertilized with P (KH2PO4) at a rate of 400 kg ha?1 while BFS and WTR were applied at a rate of 5 g per 100 g of soil. Two soil roughness levels were exposed to artificial rainfall intensities of 30 and 65 mm h?1. Three rainfall events were performed on each treatment. The runoff water generated over an area of 0.5 m2 with a slope of 8% was collected at different time intervals and analyzed for DRP, Al, Fe, and K concentrations. The results showed that, regardless of rainfall intensity and soil roughness, the concentration of DRP in the runoff water increased with increasing runoff time from the unamended plots. However, in the BFS- and WTR-amended soils, the DRP concentration decreased with runoff time. Dissolved reactive P and DRP loads were the lowest from the WTR-amended plots, followed by the control and the BFS treatment plots. Water treatment residues reduced the mean DRP concentration by 27.3% and the DRP load by 32% compared to unamended plots. The two rainfall intensities significantly affected the DRP concentration and load. Under the low rainfall intensity, the DRP concentration and load were higher compared to the high rainfall intensity. The overall DRP concentration was not affected by changes in soil roughness. However, the DRP loads were higher from the plots with low soil roughness levels, especially during the first and second runs. Both the BFS and WTR were also effective in reducing the DRP concentrations in the drain water collected during the runoff events. The concentrations of Al, Fe, and K in the runoff water were not affected by the soil amendments. However, the electrical conductivity and pH readings were higher from the BFS-amended plots.  相似文献   
998.
Atmospheric CO2 enrichment usually changes the relative contributions of plant species to biomass production of grasslands, but the types of species favored and mechanisms by which change is mediated differ among ecosystems. We measured changes in the contributions of C3 perennial forbs and C4 grasses to aboveground biomass production of tallgrass prairie assemblages grown along a field CO2 gradient (250–500 μmol mol?1) in central Texas USA. Vegetation was grown on three soil types and irrigated each season with water equivalent to the growing season mean of precipitation for the area. We predicted that CO2 enrichment would increase the forb contribution to community production, and favor tall‐grasses over mid‐grasses by increasing soil water content and reducing the frequency with which soil water fell below a limitation threshold. CO2 enrichment favored forbs over grasses on only one of three soil types, a Mollisol. The grass fraction of production increased dramatically across the CO2 gradient on all soils. Contribution of the tall‐grass Sorghastrum nutans to production increased at elevated CO2 on the two most coarse‐textured of the soils studied, a clay Mollisol and sandy Alfisol. The CO2‐caused increase in Sorghastrum was accompanied by an offsetting decline in production of the mid‐grass Bouteloua curtipendula. Increased CO2 favored the tall‐grass over mid‐grass by increasing soil water content and apparently intensifying competition for light or other resources (Mollisol) or reducing the frequency with which soil water dipped below threshold levels (Alfisol). An increase in CO2 of 250 μmol mol?1 above the pre‐industrial level thus led to a shift in the relative production of established species that is similar in magnitude to differences observed between mid‐grass and tallgrass prairies along a precipitation gradient in the central USA. By reducing water limitation to plants, atmospheric CO2 enrichment may alter the composition and even structure of grassland vegetation.  相似文献   
999.
Soil C erosion and burial in cropland   总被引:2,自引:0,他引:2  
Erosion influences the lateral and vertical distribution of soil in agricultural landscapes. A better understanding of the effects of erosion and redistribution on soil organic carbon (C) within croplands would improve our knowledge of how management practices may affect global C dynamics. In this study, the vertical and lateral distribution of soil organic C was characterized to evaluate the amounts and timescales of soil organic C movement, deposition and burial over the last 50 years in different agroecosystems across Canada. There was strong evidence that a substantial portion of eroded sediment and soil organic C was deposited as colluvium close to its source area, thereby burying the original topsoil. The deepest aggraded profile was in a potato field and contained over 70 cm of deposited soil indicating an accumulation rate of 152 Mg ha yr?1; aggraded profiles in other sites had soil deposition rates of 40–90 Mg ha?1 yr?1. The largest stock of soil organic C was 463 Mg ha?1 (to 60 cm depth) and soil C deposition ranged from about 2 to 4 Mg ha?1 yr?1 across all sites. A distinct feature observed in the aggraded profiles at every site was the presence of a large increase in soil organic C concentration near the bottom of the A horizon; the concentration of this C was greater than that at the soil surface. Compared to aggraded profiles, the SOC concentration in eroded profiles did not differ with depth, suggesting that dynamic replacement of soil organic C had occurred in eroded soils. A large amount of soil organic C is buried in depositional areas of Canadian croplands; mineralization of this stock of C appears to have been constrained since burial, but it may be vulnerable to future loss by management practices, land use change and a warming climate.  相似文献   
1000.
Nitrogen (N) added through atmospheric deposition or as fertilizer to boreal and temperate forests reduces both soil decomposer activity (heterotrophic respiration) and the activity of roots and mycorrhizal fungi (autotrophic respiration). However, these negative effects have been found in studies that applied relatively high levels of N, whereas the responses to ambient atmospheric N deposition rates are still not clear. Here, we compared an unfertilized control boreal forest with a fertilized forest (100 kg N ha?1 yr?1) and a forest subject to N‐deposition rates comparable to those in Central Europe (20 kg N ha?1 yr?1) to investigate the effects of N addition rate on different components of forest floor respiration and the production of ectomycorrhizal fungal sporocarps. Soil collars were used to partition heterotrophic (Rh) and autotrophic (Ra) respiration, which was further separated into respiration by tree roots (Rtr) and mycorrhizal hyphae (Rm). Total forest floor respiration was twice as high in the low N plot compared to the control, whereas there were no differences between the control and high N plot. There were no differences in Rh respiration among plots. The enhanced forest floor respiration in the low N plot was, therefore, the result of increased Ra respiration, with an increase in Rtr respiration, and a doubling of Rm respiration. The latter was corroborated by a slightly greater ectomycorrhizal (EM) fungal sporocarp production in the low N plot as compared to the control plot. In contrast, EM fungal sporocarp production was nearly eliminated, and Rm respiration severely reduced, in the high N plot, which resulted in significantly lower Ra respiration. We thus found a nonlinear response of the Ra components to N addition rate, which calls for further studies of the quantitative relations among N addition rate, plant photosynthesis and carbon allocation, and the function of EM fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号