首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8439篇
  免费   1148篇
  国内免费   5683篇
  15270篇
  2024年   136篇
  2023年   398篇
  2022年   452篇
  2021年   511篇
  2020年   614篇
  2019年   711篇
  2018年   658篇
  2017年   656篇
  2016年   612篇
  2015年   616篇
  2014年   596篇
  2013年   730篇
  2012年   609篇
  2011年   561篇
  2010年   484篇
  2009年   635篇
  2008年   557篇
  2007年   634篇
  2006年   531篇
  2005年   502篇
  2004年   446篇
  2003年   433篇
  2002年   339篇
  2001年   308篇
  2000年   283篇
  1999年   289篇
  1998年   218篇
  1997年   203篇
  1996年   212篇
  1995年   193篇
  1994年   173篇
  1993年   132篇
  1992年   120篇
  1991年   103篇
  1990年   105篇
  1989年   104篇
  1988年   74篇
  1987年   57篇
  1986年   48篇
  1985年   33篇
  1984年   37篇
  1983年   11篇
  1982年   48篇
  1981年   21篇
  1980年   23篇
  1979年   20篇
  1978年   6篇
  1975年   5篇
  1973年   6篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
Four bacterial species isolated from the rhizoplane of cacti growing in bare lava rocks were assessed for growth promotion of giant cardon cactus seedlings (Pachycereus pringlei). These bacteria fixed N(2), dissolved P, weathered extrusive igneous rock, marble, and limestone, and significantly mobilized useful minerals, such as P, K, Mg, Mn, Fe, Cu, and Zn in rock minerals. Cardon cactus seeds inoculated with these bacteria were able to sprout and grow normally without added nutrients for at least 12 months in pulverized extrusive igneous rock (ancient lava flows) mixed with perlite. Cacti that were not inoculated grew less vigorously and some died. The amount of useful minerals (P, K, Fe, Mg) for plant growth extracted from the pulverized lava, measured after cultivation of inoculated plants, was significant. This study shows that rhizoplane bacteria isolated from rock-growing cacti promote growth of a cactus species, and can help supply essential minerals for a prolonged period of time.  相似文献   
92.
Moran  C. J.  Pierret  A.  Stevenson  A. W. 《Plant and Soil》2000,223(1-2):101-117
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
93.
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   
94.
Aim This first global quantification of the relationship between leaf traits and soil nutrient fertility reflects the trade‐off between growth and nutrient conservation. The power of soils versus climate in predicting leaf trait values is assessed in bivariate and multivariate analyses and is compared with the distribution of growth forms (as a discrete classification of vegetation) across gradients of soil fertility and climate. Location All continents except for Antarctica. Methods Data on specific leaf area (SLA), leaf N concentration (LNC), leaf P concentration (LPC) and leaf N:P were collected for 474 species distributed across 99 sites (809 records), together with abiotic information from each study site. Individual and combined effects of soils and climate on leaf traits were quantified using maximum likelihood methods. Differences in occurrence of growth form across soil fertility and climate were determined by one‐way ANOVA. Results There was a consistent increase in SLA, LNC and LPC with increasing soil fertility. SLA was related to proxies of N supply, LNC to both soil total N and P and LPC was only related to proxies of P supply. Soil nutrient measures explained more variance in leaf traits among sites than climate in bivariate analysis. Multivariate analysis showed that climate interacted with soil nutrients for SLA and area‐based LNC. Mass‐based LNC and LPC were determined mostly by soil fertility, but soil P was highly correlated to precipitation. Relationships of leaf traits to soil nutrients were stronger than those of growth form versus soil nutrients. In contrast, climate determined distribution of growth form more strongly than it did leaf traits. Main conclusions We provide the first global quantification of the trade‐off between traits associated with growth and resource conservation ‘strategies’ in relation to soil fertility. Precipitation but not temperature affected this trade‐off. Continuous leaf traits might be better predictors of plant responses to nutrient supply than growth form, but growth forms reflect important aspects of plant species distribution with climate.  相似文献   
95.
五种温带森林土壤微生物生物量碳氮的时空格局   总被引:17,自引:1,他引:17  
刘爽  王传宽 《生态学报》2010,30(12):3135-3143
土壤微生物是森林生态系统中的重要分解者,在碳和氮循环中起着重要作用,同时也是对环境变化的敏感指示者。采用氯仿熏蒸浸提法测定了我国东北地区5种温带森林土壤微生物生物量碳(Cmic)和氮(Nmic)的季节动态及其在土壤中的垂直变化。结果表明:林型之间Cmic和Nmic差异显著(P0.01)。落叶松林、红松林、蒙古栎林、杨桦林、硬阔叶林的Cmic的变化范围依次为:278937mgkg-1、2181020mgkg-1、313891mgkg-1、5101092mgkg-1、4401911mgkg-1;其Nmic的变化范围依次为:1872mgkg-1、18103mgkg-1、2495mgkg-1、43125mgkg-1、40208mgkg-1。所有林型的Cmic和Nmic均随土壤深度的增加而下降。Cmic和Nmic基本上呈现出生长季开始之前下降、生长季结束时上升、其中出现12个峰值的季节变化格局,但峰值大小和出现时间随林型和土壤层次而变。010cm土层的Cmic和Nmic季节变化较大。Cmic和Nmic与凋落叶量、土壤有机碳含量和土壤总氮含量呈显著正相关。Cmic与土壤含水量呈正相关,而与土壤温度呈负相关。不同林型凋落物数量和组成、土壤理化性质的差异是导致其土壤微生物生物量时空格局差异的主要因素。  相似文献   
96.
Concurrent observations of soil water potential and leaf stomata diffusion resistance were made on two, plots of wheat grown at Datun Agro-ecological Experimental Station in Beijing under two different soil water conditions. These data were further complemented by weather and physiological observation. In this paper, we mainly analysed the influence of soil water potential on the status of wheat leaf stomatal resistance. The results indicate that: (1) there is a obvious influence of soil water potential on the status of wheat leaf stomata under normal conditions and (2) there is a different upper and lower epidermis stomata of wheat leaf respond to the soil water potential. The lower epidermis stomata are more sensitive to soil water potential than upper epidermis one. (3) There is a linear relationship between the ratio of lower and upper epidermis stomata resistance and soil water potential in root layer, according to this we can diagnose the degree of wheat water deficit.  相似文献   
97.
毛乌素沙地南缘沙漠化临界区域土壤养分的空间异质性   总被引:2,自引:0,他引:2  
毛乌素沙地南缘沙漠化临界区域是沙地-草地景观界面的关键部位,研究该区域土壤养分的空间格局和生态学过程,对于土地沙漠化的机理研究具有重要的意义。采用经典统计与地统计学相结合的方法,通过半变异函数及其模型、克里格局部插值估计、空间分布图等研究了毛乌素沙地南缘沙漠化临界区域土壤养分的空间异质性特征。结果表明:研究区土壤速效钾含量符合球状模型,全氮和速效磷含量符合指数模型;速效钾含量具有强空间自相关性,其结构方差比为0.882,而全氮和速效磷含量表现为中等程度的空间自相关性,其结构方差比分别为0.501和0.514;3种土壤养分空间自相关距离存在差异,其中全氮和速效钾的变程均为511m,而速效磷的变程为143m;3种土壤养分的分布格局呈现明显的空间规律性,从牛枝子群落到黑沙蒿群落,速效钾和速效磷含量先降低后升高,与研究区的界面变化过程一致,而全氮含量逐渐降低,与研究区的植被覆盖度变化一致;3种土壤养分的标准差都较小,Kriging插值结果比较可靠。  相似文献   
98.
Understanding the shifts in competitive ability and its driving forces is key to predict the future of plant invasion. Changes in the competition environment and soil biota are two selective forces that impose remarkable influences on competitive ability. By far, evidence of the interactive effects of competition environment and soil biota on competitive ability of invasive species is rare. Here, we investigated their interactive effects using an invasive perennial vine, Mikania micrantha. The competitive performance of seven Mmicrantha populations varying in their conspecific and heterospecific abundance were monitored in a greenhouse experiment, by manipulating soil biota (live and sterilized) and competition conditions (competition‐free, intraspecific, and interspecific competition). Our results showed that with increasing conspecific abundance and decreasing heterospecific abundance, (1) Mmicrantha increased intraspecific competition tolerance and intra‐ vs. interspecific competitive ability but decreased interspecific competition tolerance; (2) Mmicrantha increased tolerance of the negative soil biota effect; and (3) interspecific competition tolerance of Mmicrantha was increasingly suppressed by the presence of soil biota, but intraspecific competition tolerance was less affected. These results highlight the importance of the soil biota effect on the evolution of competitive ability during the invasion process. To better control Mmicrantha invasion, our results imply that introduction of competition‐tolerant native plants that align with conservation priorities may be effective where Mmicrantha populations are long‐established and inferior in inter‐ vs. intraspecific competitive ability, whereas eradication may be effective where populations are newly invaded and fast‐growing.  相似文献   
99.
Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies.  相似文献   
100.
广西石山人工林灌草多样性与环境因子的关系   总被引:1,自引:0,他引:1  
以广西石山人工林群落调查数据为材料,采用双向指示种分类(TWINSPAN)、冗余分析(RDA)和典范对应分析(CCA)研究了9个生境变量、1林分类型因子与石山人工林多样性、草本和灌木植物组成的关系。结果表明,坡位是影响石山人工林物种组成多样性的最主要因子,露石率和坡度对石山人工林林下有害物种分布影响最大。石山人工林林下植被组成的主要决定因素是生境因子(解释率23%~55%),而树种选择是次要因素(解释率11%~17%)。石山梯地人工林的有害草本种类多于坡地,梯地的有害灌木种类少于坡地。石山人工林的有害植物种类少于封山育林地。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号