首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8131篇
  免费   1107篇
  国内免费   5622篇
  14860篇
  2024年   124篇
  2023年   380篇
  2022年   429篇
  2021年   474篇
  2020年   587篇
  2019年   690篇
  2018年   646篇
  2017年   644篇
  2016年   595篇
  2015年   591篇
  2014年   578篇
  2013年   712篇
  2012年   594篇
  2011年   541篇
  2010年   472篇
  2009年   626篇
  2008年   544篇
  2007年   618篇
  2006年   521篇
  2005年   486篇
  2004年   437篇
  2003年   432篇
  2002年   334篇
  2001年   305篇
  2000年   281篇
  1999年   285篇
  1998年   214篇
  1997年   202篇
  1996年   209篇
  1995年   188篇
  1994年   171篇
  1993年   127篇
  1992年   116篇
  1991年   104篇
  1990年   105篇
  1989年   103篇
  1988年   74篇
  1987年   56篇
  1986年   48篇
  1985年   33篇
  1984年   36篇
  1983年   10篇
  1982年   47篇
  1981年   20篇
  1980年   23篇
  1979年   19篇
  1978年   5篇
  1975年   4篇
  1973年   5篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Quantifying patterns of fine root dynamics is crucial to the understanding of ecosystem structure and function, and in predicting how ecosystems respond to disturbance. Part of this understanding involves consideration of the carbon lost through root turnover. In the context of the rainfall pattern in the tropics, it was hypothesised that rainfall would strongly influence fine root biomass and longevity. A field study was conducted to determine root biomass, elemental composition and the influence of rainfall on longevity of fine roots in a tropical lowland evergreen rainforest at Danum Valley, Sabah, Malaysia. A combination of root coring, elemental analysis and rhizotron observation methods were used. Fine (less than 2 mm diameter) root biomass was relatively low (1700 kg ha −1) compared with previously described rainforest data. Standing root biomass was positively correlated with preceding rainfall, and the low fine root biomass in the dry season contained higher concentrations of N and lower concentrations of P and K than at other times. Observations on rhizotrons demonstrated that the decrease in fine root biomass in the dry season was a product of both a decrease in fine root length appearance and an increase in fine root length disappearance. Fitting an overall model to root survival time showed significant effects of rainfall preceding root disappearance, with the hazard of root disappearance decreasing by 8 for each 1 mm increase in the average daily (30 day) rainfall preceding root disappearance. While it is acknowledged that other factors have a part to play, this work demonstrates the importance of rainfall and soil moisture in influencing root biomass and root disappearance in this tropical rainforest.  相似文献   
92.
The above-ground coarse wood productivity of 104 Neotropical forest plots   总被引:8,自引:1,他引:8  
The net primary production of tropical forests and its partitioning between long‐lived carbon pools (wood) and shorter‐lived pools (leaves, fine roots) are of considerable importance in the global carbon cycle. However, these terms have only been studied at a handful of field sites, and with no consistent calculation methodology. Here we calculate above‐ground coarse wood carbon productivity for 104 forest plots in lowland New World humid tropical forests, using a consistent calculation methodology that incorporates corrections for spatial variations in tree‐size distributions and wood density, and for census interval length. Mean wood density is found to be lower in more productive forests. We estimate that above‐ground coarse wood productivity varies by more than a factor of three (between 1.5 and 5.5 Mg C ha?1 a?1) across the Neotropical plots, with a mean value of 3.1 Mg C ha?1 a?1. There appear to be no obvious relationships between wood productivity and rainfall, dry season length or sunshine, but there is some hint of increased productivity at lower temperatures. There is, however, also strong evidence for a positive relationship between wood productivity and soil fertility. Fertile soils tend to become more common towards the Andes and at slightly higher than average elevations, so the apparent temperature/productivity relationship is probably not a direct one. Coarse wood productivity accounts for only a fraction of overall tropical forest net primary productivity, but the available data indicate that it is approximately proportional to total above‐ground productivity. We speculate that the large variation in wood productivity is unlikely to directly imply an equivalent variation in gross primary production. Instead a shifting balance in carbon allocation between respiration, wood carbon and fine root production seems the more likely explanation.  相似文献   
93.
Recent studies have indicated that culturable bacteria constitute highly sensitive bioindicators of metal-induced stress in soil. We report the impact of different copper exposure levels characteristic of contaminated agricultural soils on culturable Pseudomonas spp. in the rhizosphere of sugar beet. We observed that the abundance of Pseudomonas spp. was much more severely affected than that of the general population of culturable heterotrophic bacteria by copper. For diversity assessment, Pseudomonas isolates were divided into operational taxonomic units based on amplified ribosomal DNA restriction analysis and genomic PCR fingerprinting by universally primed PCR. Copper significantly decreased the diversity of Pseudomonas spp. in the rhizosphere and significantly increased the frequency of copper-resistant isolates. Concomitant chemical and biological analysis of copper in the rhizosphere and in bulk soil extracts indicated no rhizosphere effect and a relatively low copper bioavailability in the studied soil, suggesting that the observed effects of copper may occur at lower total concentrations in other soils. We conclude that culturable Pseudomonas sensu stricto constitutes a highly sensitive and relevant bioindicator group for the impact of copper in the rhizosphere habitat, and suggest that continued application of copper to agricultural soils poses a significant risk to successful rhizosphere colonization by Pseudomonas spp.  相似文献   
94.
Napthalene- and decane-contaminated soils were treated with Triton X-100 (a nonionic surfactant) to characterize the soil-water partitioning behavior of the surfactant in soils with different organic content. Soil samples with different organic content were prepared by mixing sand-mulch mixtures at different proportions. The experimental results indicated that the amount of surfactant sorbed onto soil increased with increasing soil organic content and increasing surfactant concentration. The effective critical micelle concentration (CMC) also increased with increasing organic content in soil. The CMC of Triton X-100 in aqueous systems without soil was about 0.3 mM and the effective CMC values measured for soil-water-surfactant systems (approximately 1:19 soil/water ratio) with 25%, 50%, and 75% mulch content were 0.9, 1.0, and 1.7 mM, respectively. Sub-CMC surfactant sorption was modeled accurately with both the Freundlich and the linear isotherm. The maximum surfactant sorption onto soil varied from 66% to 82% of added surfactant in the absence of contaminant. The effective CMC values for Triton X-100 increased to some extent in the presence of contaminants, as did the maximum surfactant sorption. The maximum surfactant sorbed onto the soil with 75% mulch content increased from 82% for clean soils, to 95% and 96% for soils samples contaminated with naphthalene and decane, respectively.  相似文献   
95.
96.
采用盆栽控制试验,研究了土壤不同NaCl浓度(0(CK)、1‰、2‰、3‰、4‰、5‰和6‰)处理45 d对四季竹叶片脱落率和细胞膜透性以及立竹器官K+、Na+、Ca2+和Cl-等矿质离子的吸收、运输和分配的影响.结果表明,1‰~2‰NaCl处理对四季竹叶片脱落率和离子渗漏率无显著影响,3‰~6‰ NaCl处理显著提高了叶片脱落率和离子渗漏率,四季竹的盐胁迫伤害随土壤盐浓度的增大而加剧.随着Na+、Cl-在四季竹立竹各器官中的显著增加,竹根、竹秆、竹枝K+含量逐渐下降,Ca2+含量变化较小,并且K+、Ca2+在竹根、竹秆中的向上选择性运输能力逐渐减弱.由于竹叶在低浓度(1‰~2‰)和高浓度(3‰~6‰)盐胁迫下分别对Ca2+和K+具有较高的选择性吸收能力,随盐浓度的增大,竹叶K+含量迅速升高,Ca2+含量先升高后下降,这对维持竹叶的营养平衡和正常生长具有重要意义.3‰~6‰NaCl处理时,Na+、Cl-在竹叶中的浓度显著高于立竹其他器官,不仅降低了竹叶的渗透势,有利于水分的向上运输,而且四季竹还可以通过叶片脱落的方式降低体内的盐分含量,减轻盐离子毒害.  相似文献   
97.
Does elevated atmospheric CO2 concentrations affect wood decomposition?   总被引:10,自引:0,他引:10  
This study was conducted to test the hypothesis that wood tissues generated under elevated atmospheric [CO2] have lower quality and subsequent reduced decomposition rates. Chemical composition and subsequent field decomposition rates were studied for beech (Fagus sylvatica L.) twigs grown under ambient and elevated [CO2] in open top chambers. Elevated [CO2] significantly affected the chemical composition of beech twigs, which had 38% lower N and 12% lower lignin concentrations than twigs grown under ambient [CO2]. The strong decrease in N concentration resulted in a significant increase in the C/N and lignin/N ratios of the beech wood grown at elevated [CO2]. However, the elevated [CO2] treatment did not reduce the decomposition rates of twigs, neither were the dynamics of N and lignin in the decomposing beech wood affected by the [CO2] treatment, despite initial changes in N and lignin concentrations between the ambient and elevated [CO2] beech wood. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
98.
Torbert  H. A.  Prior  S. A.  Rogers  H. H.  Wood  C. W. 《Plant and Soil》2000,224(1):59-73
A series of studies using major crops (cotton [Gossypium hirsutum L.], wheat [Triticum aestivum L.], grain sorghum [Sorghum bicolor (L.) Moench.] and soybean [Glycine max (L.) Merr.]) were reviewed to examine the impact of elevated atmospheric CO2 on crop residue decomposition within agro-ecosystems. Experiments evaluated utilized plant and soil material collected from CO2 study sites using Free Air CO2 Enrichment (FACE) and open top chambers (OTC). A incubation study of FACE residue revealed that CO2-induced changes in cotton residue composition could alter decomposition processes, with a decrease in N mineralization observed with FACE, which was dependent on plant organ and soil series. Incubation studies utilizing plant material grown in OTC considered CO2-induced changes in relation to quantity and quality of crop residue for two species, soybean and grain sorghum. As with cotton, N mineralization was reduced with elevated CO2 in both species, however, difference in both quantity and quality of residue impacted patterns of C mineralization. Over the short-term (14 d), little difference was observed for CO2 treatments in soybean, but C mineralization was reduced with elevated CO2 in grain sorghum. For longer incubation periods (60 d), a significant reduction in CO2-C mineralized per g of residue added was observed with the elevated atmospheric CO2 treatment in both crop species. Results from incubation studies agreed with those from the OTC field observations for both measurements of short-term CO2 efflux following spring tillage and the cumulative effect of elevated CO2 (> 2 years) in this study. Observations from field and laboratory studies indicate that with elevated atmospheric CO2, the rate of plant residue decomposition may be limited by N and the release of N from decomposing plant material may be slowed. This indicates that understanding N cycling as affected by elevated CO2 is fundamental to understanding the potential for soil C storage on a global scale. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
99.
The controversy on how to measure fine root production of forests (P) most accurately continues. We applied four different approaches to determine annual rates of P in an old-growth temperate Fagus sylvatica–Quercus petraea stand: sequential soil coring with minimum–maximum calculation, sequential coring with compartmental flow calculation, the ingrowth core method, and a recently developed root chamber method for measuring the growth of individual fine roots in situ. The results of the four destructive approaches differed by an order of magnitude and, thus, are likely to introduce large errors in estimating P. The highest annual rates of P were obtained from the sequential coring approach with compartmental flow calculation, intermediate rates by sequential coring with minimum–maximum calculation, and low ones by both the root growth chamber and ingrowth core approaches. A carbon budget for the stand was set up based on a model of annual net carbon gain by the canopy and measurements on carbon sink strength (annual leaf, branch and stem growth). The budget implied that a maximum of 27% of the net carbon gain was available for allocation to fine root growth. When compared to the carbon budget data, the sequential coring/compartmental flow approach overestimated annual fine root production substantially; whereas the ingrowth core and root growth chamber approaches grossly underestimated P rates. With an overestimation of about 25% the sequential coring/minimum–maximum approach demonstrated the best agreement with the carbon budget data. It is concluded that the most reliable estimate of P in this temperate forest will be obtained by applying the sequential coring/minimum–maximum approach, conducted with a large number of replicate samples taken on a few dates per season, in conjunction with direct root growth observation by minirhizotrons.  相似文献   
100.
This study attempted to investigate if the tolerance of soil bacterial communities in general, and autotrophic ammonia-oxidizing bacteria (AOB) in particular, evolved as a result of prolonged exposure to metals, and could be used as an indigenous bioindicator for soil metal pollution. A soil contaminated with copper, chromium, and arsenic (CCA) was mixed with an uncontaminated garden soil (GS3) to make five test soils with different metal concentrations. A modified potential ammonium oxidation assay was used to determine the metal tolerance of the AOB community. Tolerance to Cr, Cu, and As was tested at the beginning and after up to 13 months of incubation. Compared with the reference GS3 soil, the five CCA soils showed significantly higher tolerance to Cr no matter which form of Cr (Cr3+, CrO4 2?, or Cr2O7 2?) was tested, and the Cr tolerance correlated with the total soil Cr concentration. However, the tolerance to Cu2+, As3+, and As5+ did not differ significantly between the GS3 soil and the five CCA soils. Community level physiological profiles using Biolog microtiter plates were also used to examine the chromate tolerance of the bacterial communities extracted after six months of exposure. Our results showed that the bacterial community tolerance was altered and increased as the soil Cr concentration was increased, indicating that the culturable microbial community and the AOB community responded in a similar manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号