首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14388篇
  免费   2187篇
  国内免费   6858篇
  2024年   164篇
  2023年   602篇
  2022年   599篇
  2021年   627篇
  2020年   929篇
  2019年   1030篇
  2018年   1039篇
  2017年   1009篇
  2016年   958篇
  2015年   931篇
  2014年   960篇
  2013年   1165篇
  2012年   893篇
  2011年   909篇
  2010年   709篇
  2009年   943篇
  2008年   857篇
  2007年   944篇
  2006年   807篇
  2005年   752篇
  2004年   665篇
  2003年   670篇
  2002年   592篇
  2001年   510篇
  2000年   463篇
  1999年   455篇
  1998年   369篇
  1997年   321篇
  1996年   332篇
  1995年   288篇
  1994年   282篇
  1993年   209篇
  1992年   212篇
  1991年   160篇
  1990年   163篇
  1989年   158篇
  1988年   125篇
  1987年   86篇
  1986年   86篇
  1985年   81篇
  1984年   63篇
  1983年   27篇
  1982年   79篇
  1981年   45篇
  1980年   43篇
  1979年   38篇
  1978年   23篇
  1976年   17篇
  1975年   10篇
  1958年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
L -Threonine, a kind of essential amino acid, has numerous applications in food, pharmaceutical, and aquaculture industries. Fermentative l -threonine production from glucose has been achieved in Escherichia coli. However, there are still several limiting factors hindering further improvement of l -threonine productivity, such as the conflict between cell growth and production, byproduct accumulation, and insufficient availability of cofactors (adenosine triphosphate, NADH, and NADPH). Here, a metabolic modification strategy of two-stage carbon distribution and cofactor generation was proposed to address the above challenges in E. coli THRD, an l -threonine producing strain. The glycolytic fluxes towards tricarboxylic acid cycle were increased in growth stage through heterologous expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and citrate synthase, leading to improved glucose utilization and growth performance. In the production stage, the carbon flux was redirected into l -threonine synthetic pathway via a synthetic genetic circuit. Meanwhile, to sustain the transaminase reaction for l -threonine production, we developed an l -glutamate and NADPH generation system through overexpression of glutamate dehydrogenase, formate dehydrogenase, and pyridine nucleotide transhydrogenase. This strategy not only exhibited 2.02- and 1.21-fold increase in l -threonine production in shake flask and bioreactor fermentation, respectively, but had potential to be applied in the production of many other desired oxaloacetate derivatives, especially those involving cofactor reactions.  相似文献   
993.
Human impacts can affect the soil properties through erosion and leaching, the ecosystem functions and, consequently, the capacity of a forest to regenerate. Here, we determine the effects of forest disturbance and succession on selected soil chemical properties using two different approaches, before‐after‐control‐impact (BACI) and space‐for‐time (SFT) substitution, and the threatened Atlantic Forest biome as model. We assessed with BACI the long‐term (37‐year) effects of clear cutting on soil properties by comparing data from two topsoil surveys (1978–2017) divided into two treatments: a preserved old growth forest (control) and an adjacent forest that was experimentally cleared with full tree removal (clear‐cut). We examined with SFT the relationship between stand age and soil properties using soil data from three old growth and 13 s growth forests ranging from 7 to 33 years. We found no significant differences between treatments for any soil property or significant changes in phosphorus, potassium, and calcium + magnesium over time. In contrast, pH increased and aluminum decreased in both areas. No relation was found between forest age and most of soil properties, with the exception of potassium which returned to old growth forest levels after 20 years of natural succession, and pH. BACI indicated that deforestation of old growth forest caused no significant effects on soil chemical properties after 37 years of regeneration. SFT demonstrated that soil properties did not change significantly during forest regeneration on formerly disturbed lands. Our findings indicate that natural nutrient‐depleted lowland forests were overall resistant to deforestation followed by passive regeneration at landscape scale. Abstract in Portuguese is available with online material.  相似文献   
994.
In the present study, the interaction between the HSA and MnCORM in vitro under physiological conditions, was investigated through ultraviolet-visible (UV-vis) absorption, fluorescence, time-resolved fluorescence, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic techniques and in silico molecular docking methods. Binding parameters such as the binding constant, number of binding sites and binding force were obtained from the fluorescence data. Thermodynamic interaction revealed that the reaction was spontaneous (ΔG < 0) and hydrogen bond and van der Waals interaction were primarily involved in the binding. The changes induced in the secondary structure conformation due to the MnCORM interaction were monitored using CD and FT-IR spectroscopic techniques. The results showed reduction in α-helix conformation and corresponding increase in β-sheet and unordered structures due to slight unfolding. The time-resolved fluorescence decay confirmed the static quenching mechanism of the MnCORM. The molecular docking studies revealed that the MnCORM interacted at Sudlow’s site II of domain IIIA through hydrogen bond and van der Waals interactions. In order to understand the drug distribution and elimination, studies on the drug molecule interaction with HSA are vital. Therefore, it is evident that MnCORM interacts with HSA through ground state complex formation and thus suitable for in vivo delivery.  相似文献   
995.
996.
Isoprene and monoterpenes (MTs) are among the most abundant and reactive volatile organic compounds produced by plants (biogenic volatile organic compounds). We conducted a meta‐analysis to quantify the mean effect of environmental factors associated to climate change (warming, drought, elevated CO2, and O3) on the emission of isoprene and MTs. Results indicated that all single factors except warming inhibited isoprene emission. When subsets of data collected in experiments run under similar change of a given environmental factor were compared, isoprene and photosynthesis responded negatively to elevated O3 (?8% and ?10%, respectively) and drought (?15% and ?42%), and in opposite ways to elevated CO2 (?23% and +55%) and warming (+53% and ?23%, respectively). Effects on MTs emission were usually not significant, with the exceptions of a significant stimulation caused by warming (+39%) and by elevated O3 (limited to O3‐insensitive plants, and evergreen species with storage organs). Our results clearly highlight individual effects of environmental factors on isoprene and MT emissions, and an overall uncoupling between these secondary metabolites produced by the same methylerythritol 4‐phosphate pathway. Future results from manipulative experiments and long‐term observations may help untangling the interactive effects of these factors and filling gaps featured in the current meta‐analysis.  相似文献   
997.
High soil carbonate limits crop performance especially in semiarid or arid climates. To understand how plants adapt to such soils, we explored natural variation in tolerance to soil carbonate in small local populations (demes) of Arabidopsis thaliana growing on soils differing in carbonate content. Reciprocal field‐based transplants on soils with elevated carbonate (+C) and without carbonate (?C) over several years revealed that demes native to (+C) soils showed higher fitness than those native to (?C) soils when both were grown together on carbonate‐rich soil. This supports the role of soil carbonate as a driving factor for local adaptation. Analyses of contrasting demes revealed key mechanisms associated with these fitness differences. Under controlled conditions, plants from the tolerant deme A1(+C) native to (+C) soil were more resistant to both elevated carbonate and iron deficiency than plants from the sensitive T6(?C) deme native to (?C) soil. Resistance of A1(+C) to elevated carbonate was associated with higher root extrusion of both protons and coumarin‐type phenolics. Tolerant A1(+C) also had better Ca‐exclusion than sensitive T6(?C). We conclude that Arabidopsis demes are locally adapted in their native habitat to soils with moderately elevated carbonate. This adaptation is associated with both enhanced iron acquisition and calcium exclusion.  相似文献   
998.
Ectomycorrhizal fungi constitute an important component of forest ecosystems that enhances plant nutrition and resistance against stresses. Diversity of ectomycorrhizal (EcM) fungi is, however, affected by host plant diversity and soil heterogeneity. This study provides information about the influence of host plants and soil resources on the diversity of ectomycorrhizal fungal fruiting bodies from rainforests of the Democratic Republic of the Congo. Based on the presence of fungal fruiting bodies, significant differences in the number of ectomycorrhizal fungi species existed between forest stand types (p < 0.001). The most ectomycorrhizal species‐rich forest was the Gilbertiodendron dewevrei‐dominated forest (61 species). Of all 93 species of ectomycorrhizal fungi, 19 demonstrated a significant indicator value for particular forest stand types. Of all analysed edaphic factors, the percentage of silt particles was the most important parameter influencing EcM fungi host plant tree distribution. Both host trees and edaphic factors strongly affected the distribution and diversity of EcM fungi. EcM fungi may have developed differently their ability to successfully colonise root systems in relation to the availability of nutrients.  相似文献   
999.
Boundaries are the most reactive nodes in landscapes and may be hypersensitive to global change in climate and land use. Investigations on how soils govern vegetation boundaries are scant, particularly in arid and semiarid ecosystems. The Tankwa Karoo National Park (TKNP) is a unique arid biodiversity hotspot with an unrivalled aridity gradient from < 100 mm MAP to about 700 mm in < 10 km. We investigated the abruptness of four soil‐vegetation boundaries separating eight communities. Two 50 m transects were established across four boundaries for 24 descending point transects, in which the cover‐abundance of each plant encounter at 1 m intervals was recorded. In addition, three soil samples were collected from the top 5 cm in each of the four boundaries and twelve patches. Soil and vegetation parameters altogether indicated three boundary syndromes that were context dependent: (a) a sharp boundary, (b) a gradual boundary or (c) no boundary exists. Soil respiration recorded here, and perhaps other ecosystem processes, was mediated by the soil‐vegetation boundaries. These nodes should be the focus of ecological studies since they reveal much more than the constituent patches themselves.  相似文献   
1000.
The physicochemical variations of soil, such as temperature, pH, nutrients, and the type of plant cultivation, affect the diversity of cyanobacteria, whether heterocystous or not. The aim of this study was to identify the species of cyanobacteria in a soil and the effect of environmental characteristics on cyanobacteria. Soil samples collected from six different agricultural sites in Al Diwaniyah city/Iraq during September 2016 in the autumn season were analyzed, and the physicochemical characteristics of the samples were measured using approved methods.

The results showed significant correlation and differences between cyanobacteria composition, distribution, and physicochemical factors among soil sites. The Agricultural soil was slightly alkaline and moderately saline and contained abundant nutrients, cations and a high percentage of organic matter. All these characteristics influenced the distribution and diversity of cyanobacteria. Ninety-six species were identified, including four heterocystous species represented by Anabaena, Calothrix, Cylnidrospermum, and Nostoc. However, the non-heterocystous were represented by 13 species: Aphanocapsa, Aphanothece, Arthrospira, Chroococcus, Gloeocapsa, Lyngbya, Merismopedia, Microcystis, Microcoleus, Oscillatoria, Phormidium, Schizothrix, and Spirulina. The dominant species of cyanobacteria was Oscillatoria, followed by Phormidium, Chroococcus, Gleocapsa and Lyngbya. The highest value of Shannon’s and Simpson’s diversities were registered in the Ghammas site, which is a paddy field, but the lowest was registered in the Afak site, cultivated with the alfalfa plant. Soil was classified as finely textured with silty clayey characterization, favorable for cyanobacteria growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号