首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18837篇
  免费   2856篇
  国内免费   7391篇
  2024年   182篇
  2023年   680篇
  2022年   680篇
  2021年   773篇
  2020年   1112篇
  2019年   1238篇
  2018年   1261篇
  2017年   1227篇
  2016年   1173篇
  2015年   1141篇
  2014年   1219篇
  2013年   1572篇
  2012年   1060篇
  2011年   1117篇
  2010年   840篇
  2009年   1155篇
  2008年   1040篇
  2007年   1149篇
  2006年   1029篇
  2005年   974篇
  2004年   817篇
  2003年   849篇
  2002年   760篇
  2001年   631篇
  2000年   571篇
  1999年   560篇
  1998年   460篇
  1997年   404篇
  1996年   403篇
  1995年   369篇
  1994年   362篇
  1993年   280篇
  1992年   304篇
  1991年   228篇
  1990年   213篇
  1989年   202篇
  1988年   162篇
  1987年   111篇
  1986年   109篇
  1985年   118篇
  1984年   101篇
  1983年   39篇
  1982年   104篇
  1981年   70篇
  1980年   58篇
  1979年   52篇
  1978年   28篇
  1977年   24篇
  1976年   25篇
  1975年   14篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
951.
In this paper, we investigate the adsorption mechanisms at the interface between carbon nanotubes and metal electrodes that can influence the Schottky barrier (SB). We developed a theoretical model based on the first-principles density functional theory for the interaction of an armchair single-wall carbon nanotube (SWNT) with either Au(111) or Pd(111) surface. We considered the side-wall contact by modelling the full SWNT as well as the end-contact geometry using the graphene ribbon model to mimic the contact with very large diameter nanotubes. Strong interaction has been found for the Pd–SWNT interface where the partial density of states (DOS) shows that d-orbitals of palladium are dominant at the Fermi energy so that the hybrid Pd-orbitals have the correct symmetry to overlap with π-electrons and form covalent bonds. The SWNT can only be physisorbed on the gold surface for which the contribution to the DOS of the d-orbitals is very low. Moreover, the filling of antibonding states makes the Au–SWNT bond unstable. The average and ‘atom to atom’ energy barriers at the interface have been evaluated. The matching of open-edge carbon dimers with metal lattice in the end-contact geometry is more likely for large diameter SWNTs and this makes lower the SB at the interface.  相似文献   
952.
A molecular dynamics (MD) simulation was applied to carbon dioxide+trifluoromethylbenzoic acid isomer and carbon dioxide+methylbenzoic acid isomer systems to investigate the interactions between carbon dioxide and the solutes. The pair correlation functions between the carbon dioxide and trifluoromethyl group or methyl group in the solutes were calculated to study the fluorination effect of solvation. As a result, it was found that the interactions between carbon dioxide and trifluoromethyl group in trifluoromethylbenzoic acid isomers were stronger than those between carbon dioxide and the methyl group in methylbenzoic acid isomers. The simulation results had the same tendency as the experimental solubility enhancements and coincided with the trend of the interaction parameters of the Peng-Robinson equation of state that were determined from the solubility data.  相似文献   
953.
The purpose of this study was to investigate the effect of liposomes conjugated with insulin to the surface on circulation time, biodistribution, and antitumor activity after intravenous injection in tumor-bearing mice. Immunoliposomes were constructed with insulin, which was covalently linked to liposomes containing anticancer drugs. In order to investigate the targeting performance of insulin-modified immunoliposomes (SILs) in vivo, plasma pharmacokinetics, biodistribution, and antitumor activity were tested. In comparison with nontargeted liposomes (SLs), SILs were cleared faster from circulation as a result of greater liver and tumor uptake. In addition, SILs retarded the growth of the tumor effectively, compared with the ZTO injection or SL. This is the first time for selective in vivo targeting of tumor vessels using insulin-modified immunoliposomes. SILs are candidate drug-delivery systems for therapeutic anticancer approaches.  相似文献   
954.
This paper reviews the literature on the composting process, which is one of the technological options for the processing of municipal solid wastes (MSWs). The process assumes a great significance, particularly from the point of its economic viability, capability for recycling of nutrients and waste minimization with minimum environmental problems. A number of studies on various aspects of the composting process, including process control and monitoring parameters such as temperature, pH, moisture content, aeration, and porosity are reviewed. Salient observations on microbial properties of composting are described and details of vermicomposting, as well as a detailed analysis of patents on composting of MSW, are presented.  相似文献   
955.
Vascular plants have lignified tissues that transport water, minerals, and photosynthetic products throughout the plant. They are the dominant primary producers in terrestrial ecosystems and capture significant quantities of atmospheric carbon dioxide (CO2) through photosynthesis. Some of the fixed CO2 is respired by the plant directly, with additional CO2 lost from rhizodeposits metabolized by root-associated soil microorganisms. Microbially-mediated mineralization of organic nitrogen (N) from plant byproducts (rhizodeposits, dead plant residues) followed by nitrification generates another greenhouse gas, nitrous oxide (N2O). In anaerobic soils, reduction of nitrate by microbial denitrifiers also produces N2O. The plant-microbial interactions that result in CO2 and N2O emissions from soil could be affected by genetic modification. Down-regulation of genes controlling lignin biosynthesis to achieve lower lignin concentration or a lower guaiacyl:syringyl (G:S) ratio in above-ground biomass is anticipated to produce forage crops with greater digestibility, improve short rotation woody crops for the wood-pulping industry and create second generation biofuel crops with low ligno-cellulosic content, but unharvested residues from such crops are expected to decompose quickly, potentially increasing CO2 and N2O emissions from soil. The objective of this review are the following: 1) to describe how plants influence CO2 and N2O emissions from soil during their life cycle; 2) to explain how plant residue chemistry affects its mineralization, contributing to CO2 and N2O emissions from soil; and 3) to show how modification of plant lignin biosynthesis could influence CO2 and N2O emissions from soil, based on experimental data from genetically modified cell wall mutants of Arabidopsis thaliana. Conceptual models of plants with modified lignin biosynthesis show how changes in phenology, morphology and biomass production alter the allocation of photosynthetic products and carbon (C) losses through rhizodeposition and respiration during their life cycle, and the chemical composition of plant residues. Feedbacks on the soil environment (mineral N concentration, soil moisture, microbial communities, aggregation) affecting CO2 and N2O emissions are described. Down-regulation of the Cinnamoyl CoA Reductase 1 (CCR1) gene is an excellent target for highly digestable forages and biofuel crops, but A. thaliana with this mutation has lower plant biomass and fertility, prolonged vegetative growth and plant residues that are more susceptible to biodegradation, leading to greater CO2 and N2O emissions from soil in the short term. The challenge in future crop breeding efforts will be to select tissue-specific genes for lignin biosynthesis that meet commercial demands without compromising soil CO2 and N2O emission goals.  相似文献   
956.
Abstract

Starting with a brief history of solid-state fermentation (SSF), major aspects of SSF are reviewed, which include factors affecting SSF, biomass, fermentors, modeling, industrial microbial enzymes, organic acids, secondary metabolites, and bioremediation. Physico-chemical and environmental factors such as inoculum type, moisture and water activity, pH, temperature, substrate, particle size, aeration and agitation, nutritional factors, and oxygen and carbon dioxide affecting SSF are reviewed. The advantages of SSF over Submerged Fermentation (SmF) are indicated, and the different types of fermentors used in SSF described. The economic feasibilities of adopting SSF technology in the commercial production of industrial enzymes such as amylases, cellulases, xylanase, proteases, phytases, lipases, etc., organic acids such as citric acid and lactic acid, and secondary metabolites such as gibberellic acid, ergot alkaloids, and antibiotics such as penicillin, cyclosporin, cephamycin and tetracyclines are highlighted. The relevance of applying SSF technology in the production of mycotoxins, biofuels, and biocontrol agents is discussed, and the need for adopting SSF technology in bioremediation of toxic compounds, biological detoxication of agro-industrial residues, and biotransformation of agro-products and residues is emphasized.  相似文献   
957.
Functionalized carbon nanotubes (CNTs) constitute a new class of nanostructured materials that have vast applications in CNT purification and separation, biosensing, drug delivery, etc. Hybrids formed from the functionalization of CNT with biological molecules have shown interesting properties and have attracted great attention in recent years. Of particular interest is the hybridization of single- or double-stranded nucleic acid (NA) with CNT. Nucleobases, as the building blocks of NA, interact with CNT and contribute strongly to the stability of the NA–CNT hybrids and their properties. In this work, we present a thorough review of previous studies on the binding of nucleobases with graphene and CNT, with a focus on the simulation works that attempted to evaluate the structure and strength of binding. Discrepancies among these works are identified, and factors that might contribute to such discrepancies are discussed.  相似文献   
958.
本文研究了稻田生境和非稻田生境间寄生性天敌的迁移扩散规律及其对水稻主要害虫的控制作用.结果表明,寄生蜂从大豆生境扩散到稻田生境的数量显著高于其从玉米生境扩散到稻田生境,而田埂种植玉米的寄生蜂扩散数量与不种植玉米相比无显著性差异.田埂配置大豆的有机稻田内二化螟Chilo suppressalis、三化螟Tryporyza incertulas、稻纵卷叶螟Cnaphalocrocis medinalis cnienee和褐飞虱Nilaparvata lugens的卵寄生率分别为17.8%,20.3%,10.2%和12.4%,与未配置大豆的对照相比分别增加了4.3%,7.5%,2.1%,和3.4%;它们的幼虫寄生率分别为14.7%,31.7%,21.3%,7.3%,与对照相比分别增加了5.3%,9.8%,5.7%和2.8%.而田埂配置玉米的有机稻田的二化螟,三化螟,稻纵卷叶螟和褐飞虱的卵寄生率分别为10.3%,14.4%,8.6%和9.3%;与未配置玉米的对照相比分别降低了3.2%,增加1.6%,0.5%和0.3%;它们的幼虫寄生率分别为10.3%,19.4%,17.5%和2.6%,与对照相比分别增加了0.9%,降低了2.5%,增加了1.9%和降低了1.9%.研究结果可为通过建立合理的水稻邻作模式进行害虫生物防治提供重要科学依据.  相似文献   
959.
This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelectrochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices.  相似文献   
960.
Abstract

The prolylendopeptidase (PEP) is the proteolytic enzyme, which plays an essential role in the regulation of some processes in central nervous system, such as memory, learning and behavior. It was shown that PEP activity changes at different diseases, like Parkinsons or Alzheimer's diseases, and some PEP inhibitors are used in therapy. At present time the discovery of new types of PEP inhibitors are the actual task.

In this study the structure of PEP active site was analyzed by 3D-QSAR with CoMFA methods using of 12 PEP substrates. The designed pharmacophore model assumes that substrates interact with PEP active site by pyrrolidol ring of proline residue and by hydrogen bonding.

The 3-D-QSAR + CoMFA model of PEP substrates propose that the hydrophobic bonds play the essential role in substrate interaction with enzyme. This model reveals the important steric and electrostatic areas around the molecules and the presence of substituents controls the PEP activity for substrates. Analysis of obtained data allows to assume, that substrate binding in PEP active site causes essential perturbations of substrate structure. This effect mainly depends on chemical nature of the amino acid side chain, located near to proline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号