全文获取类型
收费全文 | 69篇 |
免费 | 3篇 |
国内免费 | 3篇 |
专业分类
75篇 |
出版年
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2016年 | 1篇 |
2014年 | 2篇 |
2013年 | 4篇 |
2012年 | 2篇 |
2011年 | 1篇 |
2010年 | 2篇 |
2009年 | 1篇 |
2008年 | 2篇 |
2007年 | 2篇 |
2006年 | 6篇 |
2005年 | 4篇 |
2004年 | 3篇 |
2003年 | 5篇 |
2002年 | 4篇 |
2001年 | 2篇 |
1999年 | 5篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1991年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1984年 | 2篇 |
排序方式: 共有75条查询结果,搜索用时 0 毫秒
11.
Differential expression of expansin gene family members during growth and ripening of tomato fruit 总被引:20,自引:0,他引:20
cDNA clones encoding homologues of expansins, a class of cell wall proteins involved in cell wall modification, were isolated from various stages of growing and ripening fruit of tomato (Lycopersicon esculentum). cDNAs derived from five unique expansin genes were obtained, termed tomato Exp3 to Exp7, in addition to the previously described ripening-specific tomato Exp1 (Rose et al. (1997) Proc Natl Acad Sci USA 94: 5955–5960). Deduced amino acid sequences of tomato Exp1, Exp4 and Exp6 were highly related, whereas Exp3, Exp5 and Exp7 were more divergent. Each of the five expansin genes showed a different and characteristic pattern of mRNA expression. mRNA of Exp3 was present throughout fruit growth and ripening, with highest accumulation in green expanding and maturing fruit, and lower, declining levels during ripening. Exp4 mRNA was present only in green expanding fruit, whereas Exp5 mRNA was present in expanding fruit but had highest levels in full-size maturing green fruit and declined during the early stages of ripening. mRNAs from each of these genes were also detected in leaves, stems and flowers but not in roots. Exp6 and Exp7 mRNAs were present at much lower levels than mRNAs of the other expansin genes, and were detected only in expanding or mature green fruit. The results indicate the presence of a large and complex expansin gene family in tomato, and suggest that while the expression of several expansin genes may contribute to green fruit development, only Exp1 mRNA is present at high levels during fruit ripening. 相似文献
12.
Rodolfo Chiosi 《Plant biosystems》2013,147(1):233-241
Abstract The involvement of cellulase (endo-b-l,4-glucanase, EC 3.2.1.4) in a number of different cell separation events which occur in higher plants has been well established. Besides their significance for the plant growth and differentiation, these events can be economically important since they also comprise softening of fleshy fruits and abscission of fruits, flowers and leaves. In higher plants cellulase is present in a number of different biochemical isoforms which are encoded by different genes. This finding is in accordance with the wide range of physiological events which require the intervention of cellulase activity, and whose peculiarities and amplitudes can be quite various. 相似文献
13.
14.
Effects of tissue position (viz. outer vs inner mesocarp) and heat treatment (48°C, 20 min) on variations in polygalacturonase (EC 3.2.1.15 and EC 3.2.1.67) activity and ripening of fruits of Carica papaya L. cv. Backcross Solo were investigated. Polygalacturonase activity increased during ripening concomitantly with an increase in tissue softness and soluble polyuronide level. Throughout ripening, inner mesocarp tissue was softer and contained higher polygalacturonase activity than outer mesocarp tissue. Titratable acidity as well as ß-galactosidase (EC 3.2.1.23) activity also increased during ripening; however, unlike polygalacturonase, their level or activity was lower in inner than in outer mesocarp. Ascorbic acid could partially account for the increase in titratable acidity during ripening but contributed very little to the differences in titratable acid levels between outer and inner mesocarp. Heat treatment had no effect on either fruit softness or titratable acidity, but it markedly reduced the increase in ascorbic acid and polygalacturonase activity during ripening. Ripening, as reflected by changes in tissue softness and polygalacturonase activity, progressed outwardly from the interior towards the exterior of the fruit. The effect of heat treatment in suppressing polygalacturonase activity was relatively greater in inner than in outer mesocarp, suggesting that sensitivity of the enzyme to heat treatment may vary with stage of ripeness of the tissue. 相似文献
15.
16.
猕猴桃(Actinidia chinensis Planch.)属于呼吸跃变型果实,采后易软化腐烂,不耐贮藏,如何延长猕猴桃果实贮藏期限已成为猕猴桃产业发展壮大亟待解决的问题。猕猴桃果实采后生理变化强烈影响果实的贮藏期限和果实品质,特别是呼吸作用、乙烯合成及其信号转导系统和果实软化等,并且它们与猕猴桃贮藏保鲜技术的研发与应用密切相关。本文重点从这3个方面就国内外相关研究进展进行综述,并讨论它们对猕猴桃耐贮性的影响,以期为猕猴桃耐贮新品种的培育和贮藏保鲜技术的研发提供理论依据。 相似文献
17.
B. Wen A. Ström A. Tasker G. West G. A. Tucker 《Plant biology (Stuttgart, Germany)》2013,15(6):1025-1032
Post‐harvest storage is largely limited by fruit softening, a result of cell wall degradation. Pectin methylesterase (PE) (EC 3.1.1.11) is a major hydrolase responsible for pectin de‐esterification in the cell wall, a response to fruit ripening. Two major PE isoforms, PE1 and PE2, have been isolated from tomato (Solanum lycopersicon) pericarp tissue and both have previously been down‐regulated using antisense suppression. In this paper, PE1 and PE2 double antisense tomato plants were successfully generated through crossing the two single antisense lines. In the double antisense fruit, approximately 10% of normal PE activity remained and ripening associated pectin de‐esterification was almost completely blocked. However, double antisense fruit softened normally during ripening. In tomato fruit, the PE1 isoform was found to contribute little to total PE activity and have little effect on the degree of esterification of pectin. In contrast, the other dominant fruit isoform, PE2, has a major impact on de‐esterification of total pectin. PE2 appears to act on non‐CDTA‐soluble pectin during ripening and on CDTA‐soluble pectin before the start of ripening in a potentially block‐wise fashion. 相似文献
18.
《Biotechnic & histochemistry》2013,88(4):209-218
This paper shows that by using solutions heated in the incubator during certain stages, the alizarin red S method of staining the ossified centers in embryos has been shortened, with a consequent saving in time.New methods of mounting the specimens have been evolved and are described in detail.The technic of photographing mounted and unmounted specimens is outlined and illustrated by diagrams.Diagrammatic illustrations are provided of the various types of apparatus used, including a plan of the cabinet for demonstrating clearly the smaller embryos mounted between watch glasses. Photographic examples of the results achieved are also shown. 相似文献
19.
减压处理对采后杏果实软化的生理控制效应 总被引:3,自引:0,他引:3
以串枝红杏为试材,研究了减压处理对高湿、(0±0.5)℃条件下采后杏果实生理生化变化的影响,探讨了减压处理抑制杏果实软化的生理机制。结果表明:随着贮藏时间的延长,减压和常压处理的果实硬度均逐渐下降,但同期减压处理硬度始终较高且下降的幅度小,而它们的水溶性果胶含量和相对电导率呈现持续增加的趋势,且同期减压处理值越低增加的幅度越小;减压处理的呼吸强度和多聚半乳糖醛酸酶(PG)活性峰值低且出现迟;2种处理的丙二醛(MDA)含量和脂氧合酶(LOX)活性均呈现先升后降趋势且出现峰值时间相同,但对照的峰值和升降幅度更大;常压和减压处理冷害程度不断加重,腐烂果率和失重率逐渐增大,但减压处理均明显低于同期常压处理。研究发现,减压处理能有效降低采后杏果实的呼吸强度、多聚半乳糖醛酸酶和脂氧合酶活性,维持果肉细胞的正常结构和功能,从而延缓杏果实软化衰老进程。 相似文献
20.
Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants 总被引:35,自引:0,他引:35
Excessive softening is the main factor limiting fruit shelf life and storage. Transgenic plants modified in the expression of cell wall modifying proteins have been used to investigate the role of particular activities in fruit softening during ripening, and in the manufacture of processed fruit products. Transgenic experiments show that polygalacturonase (PG) activity is largely responsible for pectin depolymerization and solubilization, but that PG-mediated pectin depolymerization requires pectin to be de-methyl-esterified by pectin methylesterase (PME), and that the PG -subunit protein plays a role in limiting pectin solubilization. Suppression of PG activity only slightly reduces fruit softening (but extends fruit shelf life), suppression of PME activity does not affect firmness during normal ripening, and suppression of -subunit protein accumulation increases softening. All these pectin-modifying proteins affect the integrity of the middle lamella, which controls cell-to-cell adhesion and thus influences fruit texture. Diminished accumulation of either PG or PME activity considerably increases the viscosity of tomato juice or paste, which is correlated with reduced polyuronide depolymerization during processing. In contrast, suppression of -galactosidase activity early in ripening significantly reduces fruit softening, suggesting that the removal of pectic galactan side-chains is an important factor in the cell wall changes leading to ripening-related firmness loss. Suppression or overexpression of endo-(1\to4)-d-glucanase activity has no detectable effect on fruit softening or the depolymerization of matrix glycans, and neither the substrate nor the function for this enzyme has been determined. The role of xyloglucan endotransglycosylase activity in softening is also obscure, and the activity responsible for xyloglucan depolymerization during ripening, a major contributor to softening, has not yet been identified. However, ripening-related expansin protein abundance is directly correlated with fruit softening and has additional indirect effects on pectin depolymerization, showing that this protein is intimately involved in the softening process. Transgenic work has shown that the cell wall changes leading to fruit softening and textural changes are complex, and involve the coordinated and interdependent activities of a range of cell wall-modifying proteins. It is suggested that the cell wall changes caused early in ripening by the activities of some enzymes, notably -galactosidase and ripening-related expansin, may restrict or control the activities of other ripening-related enzymes necessary for the fruit softening process. 相似文献