首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10117篇
  免费   1084篇
  国内免费   252篇
  11453篇
  2024年   80篇
  2023年   100篇
  2022年   139篇
  2021年   154篇
  2020年   393篇
  2019年   470篇
  2018年   448篇
  2017年   336篇
  2016年   287篇
  2015年   305篇
  2014年   464篇
  2013年   644篇
  2012年   337篇
  2011年   341篇
  2010年   232篇
  2009年   312篇
  2008年   343篇
  2007年   402篇
  2006年   371篇
  2005年   365篇
  2004年   277篇
  2003年   268篇
  2002年   258篇
  2001年   176篇
  2000年   148篇
  1999年   152篇
  1998年   167篇
  1997年   132篇
  1996年   136篇
  1995年   118篇
  1994年   139篇
  1993年   151篇
  1992年   119篇
  1991年   129篇
  1990年   99篇
  1989年   105篇
  1988年   75篇
  1987年   90篇
  1986年   63篇
  1985年   169篇
  1984年   313篇
  1983年   235篇
  1982年   291篇
  1981年   274篇
  1980年   183篇
  1979年   182篇
  1978年   144篇
  1977年   120篇
  1976年   73篇
  1975年   50篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
111.
112.
113.
Salinomycin is a polyether antibiotic with properties of an ionophore, which is commonly used as cocciodiostatic drug and has been shown to be highly effective in the elimination of cancer stem cells (CSCs) both in vitro and in vivo. One important caveat for the potential clinical application of salinomycin is its marked neural and muscular toxicity. In the present study we show that salinomycin in concentrations effective against CSCs exerts profound toxicity towards both dorsal root ganglia as well as Schwann cells. This toxic effect is mediated by elevated cytosolic Na+ concentrations, which in turn cause an increase of cytosolic Ca2+ by means of Na+/Ca2+ exchangers (NCXs) in the plasma membrane as well as the mitochondria. Elevated Ca2+ then leads to calpain activation, which triggers caspase-dependent apoptosis involving caspases 12, 9 and 3. In addition, cytochrome c released from depolarized mitochondria directly activates caspase 9. Combined inhibition of calpain and the mitochondrial NCXs resulted in significantly decreased cytotoxicity and was comparable to caspase 3 inhibition. These findings improve our understanding of mechanisms involved in the pathogenesis of peripheral neuropathy and are important to devise strategies for the prevention of neurotoxic side effects induced by salinomycin.  相似文献   
114.
Lithium‐ion batteries (LIBs) have dominated the portable electronics industry and solid‐state electrochemical research and development for the past two decades. In light of possible concerns over the cost and future availability of lithium, sodium‐ion batteries (SIBs) and other new technologies have emerged as candidates for large‐scale stationary energy storage. Research in these technologies has increased dramatically with a focus on the development of new materials for both the positive and negative electrodes that can enhance the cycling stability, rate capability, and energy density. Two‐dimensional (2D) materials are showing promise for many energy‐related applications and particularly for energy storage, because of the efficient ion transport between the layers and the large surface areas available for improved ion adsorption and faster surface redox reactions. Recent research highlights on the use of 2D materials in these future ‘beyond‐lithium‐ion’ battery systems are reviewed, and strategies to address challenges are discussed as well as their prospects.  相似文献   
115.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
116.
Novel 2D van der Waals heterostructures with innovative bimetallic oxychloride (Bi‐ and Sb‐based oxychloride) nanosheets that are well dispersed on reduced graphene oxide nanosheets, are established through element engineering for superior potassium ion battery (PIBs) anodes. This material displays an exceptional electrochemical performance, obtaining a discharge capacity as high as 360 mAh g?1 at 100 mA g?1 after running 1000 cycles for over 9 months with a capacity preservation percentage of 88.5% and achieving a discharge capacity as high as 319 mAh g?1 at 1000 mA g?1, in addition to the low charge/discharge plateaus for anodes and promising full cell performance. More significantly, the nature of such 2D van der Waals heterostructures, including the element engineering for morphology control, the function of each component of heterostructures, the mechanism of potassium ion storage, and the process of K+ intercalation accompanied with the lattice distortion and chemical bond breakages, is explored in depth. This study is critical for not only paving the way for the practical application of PIBs but also shedding light on fundamentals of potassium ion storage in 2D van der Waals heterostructures.  相似文献   
117.
Biosorption is a surface-dependent phenomenon. Surface modifications by chemical treatment methods could either improve or reduce the biosorption capacity of potential biosorbents. In the present work, pristine Pteris vittata L. pinnae (PPV) powder was treated separately with sodium hydroxide (NaOH), calcium chloride (CaCl2), and nitric acid (HNO3). The pristine and treated biosorbents were used to assess the biosorption of Pb(II), Cd(II), and Cr(VI) as a function of pH. Kinetics and adsorption isotherms were studied. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and scanning electron microscope combined with energy dispersive x-ray (SEM-EDX) spectroscopic techniques were used to characterize the biosorbents before and after chemical treatments. The possible functional groups contributing to the metal sorption were identified. Results revealed favorable biosorption of Pb(II), Cd(II), and Cr(VI) described by pseudo-second order kinetics. NaOH-treated P. vittata (NPV) showed higher biosorption capacity for Pb(II) and Cd(II) compared to that of PPV. ATR-FTIR studies indicated that -OH, -COOH, and -NH2 groups were mainly involved in Cr(VI) and -OH in Pb(II) and Cd(II) biosorption. The enhanced efficiency of NPV and CaCl2 treated P. vittata (CPV) in the uptake of Pb(II) and Cd(II) compared to PPV can be associated with their altered physicochemical characters.  相似文献   
118.
We report the synthesis of novel 3-substituted 5-benzylidene-1-methyl-2-thiohydantoins 3, and their biological evaluation using NADPH oxidase (NOX) 1 and 4. Based on structural and pharmacophore analyses of known inhibitors such as hydroxypyrazole 2, we envisioned interesting 2-thiohydantoin compounds, 3-substituted 5-benzylidene-1-methyl-2-thiohydantoins 3 that would be expected to well match the structural features in 2. Efficient synthesis of eighteen target compounds 3 were achieved through the synthetic pathway of 4  11  3, established after consideration of several plausible synthetic pathways. The inhibitory activities of compounds 3 against NOX 1 and 4 were measured, with some of the target compounds showing similar or higher activities compared with reference 2; in particular, compounds 3bz, 3cz, and 3ez were found to be promising inhibitors of both NOX 1 and 4 with modest isozyme selectivities, which highlights the significance of the 2-thiohydantoin substructure for inhibition of NOX 1 and 4. This marks the first time these compounds have been applied to the inhibition of NOX enzymes.  相似文献   
119.
MATE (multidrug and toxic compound extrusion) transporter proteins mediate metabolite transport in plants and multidrug resistance in bacteria and mammals. MATE transporter NorM from Vibrio cholerae is an antiporter that is driven by Na+ gradient to extrude the substrates. To understand the molecular mechanism of Na+‐substrate exchange, molecular dynamics simulation was performed to study conformational changes of both wild‐type and mutant NorM with and without cation bindings. Our results show that NorM is able to bind two Na+ ions simultaneously, one to each of the carboxylic groups of E255 and D371 in the binding pocket. Furthermore, this di‐Na+ binding state is likely more efficient for conformational changes of NorM_VC toward the inward‐facing conformation than single‐Na+ binding state. The observation of two Na+ binding sites of NorM_VC is consistent with the previous study that two sites for ion binding (denoted as Na1/Na2 sites) are found in the transporter LeuT and BetP, another two secondary transporters. Taken together, our findings shed light on the structure rearrangements of NorM on Na+ binding and enrich our knowledge of the transport mechanism of secondary transporters. Proteins 2014; 82:240–249. © 2013 Wiley Periodicals, Inc.  相似文献   
120.
The transmembrane (TM) segment of the major coat protein from Ff bacteriophage has been extensively studied as an example of dimerization in detergent and lipid bilayer systems. However, almost all the information regarding this interaction has been gained through mutagenesis studies, with little direct structural information being available. To this end solution NMR has the potential to provide new insights into structure of the dimer. In order to evaluate the utility of this approach we have studied a selectively 15N-labeled peptide containing the TM segment of MCP (MCPTM) by solution NMR. This peptide was found to give rise to detergent concentration-dependent spectra that were assigned to monomeric and dimeric forms. The standard free energy of this interaction in SDS was estimated from these spectra and found to be consistent with weak but specific dimerization. In addition, similar spectra could be obtained in β-octyl glucoside with intermolecular paramagnetic relaxation experiments demonstrating a parallel arrangement of TM helices in the dimer. In both detergents backbone chemical shift differences between monomeric and dimeric forms of MCPTM showed that the largest changes occur around its GXXXG motif. The resulting structural model is consistent with observations made for MCP mutants previously characterized in biological membranes, opening the door to detailed structural characterization of this form of MCP. These results also have general implications for the study of weakly interacting TM segments by solution NMR since the use of similar sample conditions should allow structural data to be accessed for oligomeric states from a wide range systems that undergo biologically relevant but weak associations in the membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号