首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1727篇
  免费   100篇
  国内免费   79篇
  2024年   1篇
  2023年   14篇
  2022年   26篇
  2021年   39篇
  2020年   57篇
  2019年   72篇
  2018年   69篇
  2017年   31篇
  2016年   29篇
  2015年   32篇
  2014年   90篇
  2013年   110篇
  2012年   47篇
  2011年   83篇
  2010年   74篇
  2009年   76篇
  2008年   85篇
  2007年   107篇
  2006年   104篇
  2005年   73篇
  2004年   63篇
  2003年   68篇
  2002年   71篇
  2001年   38篇
  2000年   51篇
  1999年   45篇
  1998年   35篇
  1997年   51篇
  1996年   34篇
  1995年   19篇
  1994年   24篇
  1993年   22篇
  1992年   22篇
  1991年   27篇
  1990年   10篇
  1989年   19篇
  1988年   15篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
排序方式: 共有1906条查询结果,搜索用时 0 毫秒
61.
62.
Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al.26 that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.  相似文献   
63.
Human-induced pluripotent stem cell-derived vascular smooth muscle cells (hiPSC-VSMCs) with proangiogenic properties have huge therapeutic potential. While hiPSC-VSMCs have already been utilized for wound healing using a biomimetic collagen scaffold, an in situ forming hydrogel mimicking the native environment of skin offers the promise of hiPSC-VSMC mediated repair and regeneration. Herein, the impact of a collagen type-I-hyaluronic acid (HA) in situ hydrogel cross-linked using a polyethylene glycol-based cross-linker on hiPSC-VSMCs viability and proangiogenic paracrine secretion was investigated. Our study demonstrated increases in cell viability, maintenance of phenotype and proangiogenic growth factor secretion, and proangiogenic activity in response to the conditioned medium. The optimally cross-linked and functionalized collagen type-I/HA hydrogel system developed in this study shows promise as an in situ hiPSC-VSMC carrier system for wound regeneration.  相似文献   
64.
Some human observational studies have suggested an anti-inflammatory role of osteocalcin (OCN). An inflammatory protocol using interferon-γ and tumor necrosis factor-α (10 ng/ml) was employed to examine the acute (24 hr) and chronic (144 hr) effects of uncarboxylated OCN (ucOCN) in commercial, primary, subcultured human aortic endothelial cells (HAEC), and human smooth muscle cells (HASMCs). The inflammatory protocol increased phosphorylation of intracellular signaling proteins (CREB, JNK, p38, ERK, AKT, STAT3, STAT5) and increased secretion of adhesion markers (vascular cell adhesion molecule-1, intracellular adhesion molecule-1, monocyte chemoattractant protein-1) and proinflammatory cytokines (interleukin-6 [IL-6], IL-8). After acute inflammation, there were no additive or reductive effects of ucOCN in either cell type. Following chronic inflammation, ucOCN did not affect cell responses, nor did it appear to have any pro- or anti-inflammatory effects when administered acutely or chronically on its own in either cell type. Additionally, ucOCN did not affect lipopolysaccharide (LPS)-induced acute inflammation in HAECs or HASMCs. The findings of this study do not support a causal role for OCN within the models of vascular inflammation chosen. Further confirmatory studies are warranted.  相似文献   
65.
66.

Background

Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood.

Methods

We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested.

Results

MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed.

Conclusions

Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins.

General significance

Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.  相似文献   
67.
68.
The cysteine and glycine-rich protein 1 and 2 genes (CSRP1 and CSRP2) are an effective growth factor in promoting skeletal muscle growth in vitro and vivo. However, in cattle, the information on the CSRP1 and CSRP2 genes is very limited. The aim of this study was to examine the association of the CSRP1 and CSRP2 variants with growth and carcass traits in cattle breeds. Three single nucleotide variants (SNVs) were identified within the bovine CSRP1 gene, whereas CSRP2 gene has not detected any SNVs, using DNA pooled sequencing, PCR-RFLP, and forced PCR-RFLP methods. These SNVs include g. 801T>C (Intron 2), g. 46T>C (Exon 3) and g. 99C>G (Intron 3). Besides, we also investigated haplotype frequencies and linkage disequilibrium (LD) coefficients for three SNVs in all study populations. LD and haplotype structure of CSRP1 were different between breeds. The result of haplotype analysis demonstrated eight haplotype present in QC (Qinchuan) and one haplotype in CH (Chinese Holstein). Only haplotype 1 (TTC), shared by all two populations, comprised 10.74% and 100.00%, of all haplotypes observed in QC and CH, respectively. Haplotype 5 (CTC) had the highest haplotype frequencies in QC (30.98%) and haplotype 1 had the highest haplotype frequencies in CH (100.00%). The statistical analyses indicated that one single SNV and 19 combined haplotypes were significantly or highly significantly associated with growth and carcass traits in the QC cattle population (P < 0.05 or P < 0.01). Quantitative real-time PCR (qRT-PCR) analyses showed that the bovine CSRP1 and CSRP2 genes were widely expressed in many tissues. The results of this study suggest that the CSRP1 gene possibly is a strong candidate gene that affects growth and carcass traits in the Chinese beef cattle breeding.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号