首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18652篇
  免费   1711篇
  国内免费   869篇
  2024年   69篇
  2023年   540篇
  2022年   761篇
  2021年   1022篇
  2020年   821篇
  2019年   986篇
  2018年   894篇
  2017年   682篇
  2016年   744篇
  2015年   901篇
  2014年   1221篇
  2013年   1578篇
  2012年   875篇
  2011年   1017篇
  2010年   725篇
  2009年   881篇
  2008年   867篇
  2007年   797篇
  2006年   749篇
  2005年   700篇
  2004年   644篇
  2003年   477篇
  2002年   453篇
  2001年   363篇
  2000年   278篇
  1999年   253篇
  1998年   253篇
  1997年   230篇
  1996年   174篇
  1995年   150篇
  1994年   197篇
  1993年   136篇
  1992年   134篇
  1991年   85篇
  1990年   93篇
  1989年   59篇
  1988年   66篇
  1987年   46篇
  1986年   44篇
  1985年   37篇
  1984年   35篇
  1983年   36篇
  1982年   35篇
  1981年   33篇
  1980年   17篇
  1979年   19篇
  1978年   13篇
  1976年   9篇
  1975年   9篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Liquid–liquid phase separation (LLPS) is a complex physicochemical phenomenon mediated by multivalent transient weak interactions among macromolecules like polymers, proteins, and nucleic acids. It has implications in cellular physiology and disease conditions like cancer and neurodegenerative disorders. Many proteins associated with neurodegenerative disorders like RNA binding protein FUS (FUsed in Sarcoma), alpha-synuclein (α-Syn), TAR DNA binding protein 43 (TDP-43), and tau are shown to undergo LLPS. Recently, the tau protein responsible for Alzheimer's disease (AD) and other tauopathies is shown to phase separate into condensates in vitro and in vivo. The diverse noncovalent interactions among the biomolecules dictate the complex LLPS phenomenon. There are limited chemical tools to modulate protein LLPS which has therapeutic potential for neurodegenerative disorders. We have rationally designed cyclic dipeptide (CDP)-based small-molecule modulators (SMMs) by integrating multiple chemical groups that offer diverse chemical interactions to modulate tau LLPS. Among them, compound 1c effectively inhibits and dissolves Zn-mediated tau LLPS condensates. The SMM also inhibits tau condensate-to-fibril transition (tau aggregation through LLPS). This approach of designing SMMs of LLPS establishes a novel platform that has potential implication for the development of therapeutics for neurodegenerative disorders.  相似文献   
182.
183.
The time course and nature of the pulmonary inflammatory and antioxidant responses, both during and after hyperoxic-induced acute lung injury were studied in the preterm guinea pig. Three-day preterm (65 days gestation) guinea pigs were randomly exposed to either 21% O2 (control) or 95% O2 (hyperoxia) for 72 hours. All pups were then maintained in ambient conditions for up to a further 11 days, during which time lung damage was monitored. In animals exposed to hyperoxia, evidence of acute lung injury and inflammation was characterized by a marked increase in microvascular permeability and elevated numbers of neutrophils in bronchoalveolar lavage fluid. Protein concentration, elastase-like activity and elastase-inhibitory capacity in lavage fluid were at a maximum at the end of the 72 hours hyperoxic exposure. Four days later, all values had returned to control levels. In contrast, increased numbers of neutrophils, macrophages and lymphocytes were recovered in the lavage fluid during this early recovery period. Coinciding with the influx of inflammatory cells, there was a significant increase in glutathione peroxidase, manganese superoxide dismutase and catalase activities in immature lung. Lung copper/zinc superoxide dismutase activity remained unchanged during both experimental periods. The strong temporal relationship between the influx of inflammatory cells to the lung and the induction of pulmonary antioxidant enzyme defences suggests that a common mechanism underlies both responses. These findings have led us to regard inflammation in the hyperoxic-injured immature lung as a beneficial event and not, as previously suggested, as part of the injurious process.  相似文献   
184.
Abstract Three phyletic groups of Borrelia associated with Lyme disease, B. burgdorferi, B. garinii and group VS461 can be distinguished from each other and other species of Borrelia by Bfa I restriction site polymorphisms in PCR amplified 16S rRNA genes. One strain isolated from an Ixodes pacificus tick in California that was previously unclassifiable was distinguishable from B. burgdorferi by an Mnl I restriction site polymorphism.  相似文献   
185.
186.
帕金森病是常见的神经退行性疾病,其发病原因至今尚未明确,目前的治疗方法价格昂贵、效果差且副作用大。帕金森病患者常见胃肠道功能障碍,帕金森病和肠道菌群之间的关联已得到实验证实,患者有望通过益生菌改善肠道菌群达到治疗的目的。工程益生菌的出现使得人们可以按照自己的意愿改造益生菌,提高其稳定性和靶向性,展现出其特有的应用潜力。本文将从益生菌治疗帕金森病的研究现状出发,阐述益生菌治疗帕金森病的可能机制,进一步分析工程益生菌治疗帕金森病的可行性,为该疾病的安全治疗提供新的思路。  相似文献   
187.
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.  相似文献   
188.
189.
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master ‘clock of age’ (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial – specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.  相似文献   
190.
Declining nicotinamide adenine dinucleotide (NAD+) concentration in the brain during aging contributes to metabolic and cellular dysfunction and is implicated in the pathogenesis of aging-associated neurological disorders. Experimental therapies aimed at boosting brain NAD+ levels normalize several neurodegenerative phenotypes in animal models, motivating their clinical translation. Dietary intake of NAD+ precursors, such as nicotinamide riboside (NR), is a safe and effective avenue for augmenting NAD+ levels in peripheral tissues in humans, yet evidence supporting their ability to raise NAD+ levels in the brain or engage neurodegenerative disease pathways is lacking. Here, we studied biomarkers in plasma extracellular vesicles enriched for neuronal origin (NEVs) from 22 healthy older adults who participated in a randomized, placebo-controlled crossover trial (NCT02921659) of oral NR supplementation (500 mg, 2x /day, 6 weeks). We demonstrate that oral NR supplementation increases NAD+ levels in NEVs and decreases NEV levels of Aβ42, pJNK, and pERK1/2 (kinases involved in insulin resistance and neuroinflammatory pathways). In addition, changes in NAD(H) correlated with changes in canonical insulin–Akt signaling proteins and changes in pERK1/2 and pJNK. These findings support the ability of orally administered NR to augment neuronal NAD+ levels and modify biomarkers related to neurodegenerative pathology in humans. Furthermore, NEVs offer a new blood-based window into monitoring the physiologic response of NR in the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号