首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2603篇
  免费   352篇
  国内免费   116篇
  2024年   6篇
  2023年   85篇
  2022年   107篇
  2021年   154篇
  2020年   144篇
  2019年   186篇
  2018年   148篇
  2017年   128篇
  2016年   110篇
  2015年   185篇
  2014年   194篇
  2013年   192篇
  2012年   120篇
  2011年   125篇
  2010年   89篇
  2009年   124篇
  2008年   109篇
  2007年   101篇
  2006年   95篇
  2005年   87篇
  2004年   89篇
  2003年   81篇
  2002年   51篇
  2001年   42篇
  2000年   42篇
  1999年   36篇
  1998年   34篇
  1997年   20篇
  1996年   19篇
  1995年   15篇
  1994年   19篇
  1993年   14篇
  1992年   12篇
  1991年   6篇
  1990年   10篇
  1989年   9篇
  1988年   13篇
  1987年   5篇
  1986年   8篇
  1985年   12篇
  1984年   12篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有3071条查询结果,搜索用时 15 毫秒
51.
This paper addresses some of the conceptual issues involved in the analysis of the age and origin of mediterranean‐climate plant taxa, paying particular attention to three topics: (1) the importance of an explicit time frame in the definition of biogeographical origins, (2) the distinction between the age of traits and the age of taxa, and (3) the idea of mediterranean‐type ecosystems as environmental islands. (1) In California, recent analyses demonstrate that the diversity of species derived from different biogeographical origins is significantly correlated with temperature and precipitation gradients. These patterns support the hypothesis that niche conservatism is an important factor structuring modern diversity gradients. However, depending on how far back in time one looks, a species may be assigned to different origins; future discussions of biogeographical origins need to address the appropriate time frame for analysis. (2) Past research has demonstrated distinctive trait syndromes among woody plants of the Mediterranean, Chile, California and Mexico, and proposed that the syndromes are associated with lineages of different age in these floras. Reanalysis of individual traits demonstrates greater variability among regions than previously reported. The classification of plants into ‘old’ and ‘new’ genera is re‐evaluated, and it is suggested that greater attention be paid to the age of traits, rather than to the age of taxa, especially at an arbitrary rank such as genus. (3) The idea of mediterranean‐climate regions as ‘climatic islands’ is examined. Space–time diagrams of climate enable one to view the emergence of distinctive climatic regions in a continental context. The terms ‘synclimatic’ and ‘anticlimatic’ are proposed, referring to migration routes that parallel climate contours in space and time versus those that cross contours (including the case of geographic stasis in the face of climate change), respectively. Mediterranean‐climate regions have served as important case studies in plant ecology and evolution, and merit continued close examination in the light of continued advances in phylogenetics and palaeoecology.  相似文献   
52.
Abstract The cell wall of Candida albicans contains mannoproteins that are covalently associated with β-1,6-glucan. When spheroplasts were allowed to regenerate a new cell wall, initially non-glucosylated cell wall proteins accumulated in the medium. While the spheroplasts became osmotically stable, β-1,6-glucosylated proteins could be identified in their cell wall by SDS-extraction or β-1,3-glucanase digestion. At later stages of regeneration, β-1,3-glucosylated proteins were also found. Hence, incorporation of proteins into the cell wall is accompanied by extracellular coupling to β-1,6-/β-l,3-glucan. The SDS-extractable glucosylated proteins probably represent degradation products of wall proteins rather than their precursors. Tunicamycin delayed, but did not prevent the formation of β-1,6-glucosylated proteins, demonstrating that β-1,6-glucan is not attached to N -glycosidic side-chains of wall proteins.  相似文献   
53.
RNase alters the in vitro assembly of spindle asters in homogenates of meiotically dividing surf clam (Spisula solidissima) oocytes. Some effects of RNase, such as reduced astral fiber length, appear nonenzymatic and probably result from RNase binding to tubulin. However, RNase-induced changes in the microtubule organizing center are also observed. Since other polycations can mimic RNase effects, the existence of an RNA component of the spindle organizing center remains uncertain. Effects of RNase and other polycations on astral fiber length can be prevented and reversed by the RNase inhibitor, polyguanylic acid. Polyguanylic acid can also augment astral fiber length in the absence of added RNase or other polycations. Augmentation by polyguanylic acid is favored by high ionic strength, and can be duplicated by polyuridylic acid and, with less efficiency, by polyadenylic acid. Polucytidylic acid and unfractionated yeast RNA, however, are unable to augment aster assembly. Polyguanylic acid can also augment the length of astral fibers on complete spindles isolated under polymerizing condition. These results demonstrate that specfic polyribonucleotides can alter spindle assembly in vitro. The presence of an inhibitor of microtubule assembly in Spisula oocytes, which can be inactivated by specific RNAs, is suggested.  相似文献   
54.
Centrioles are duplicated during S-phase to generate the two centrosomes that serve as mitotic spindle poles during mitosis. The centrosomal pool of the Mps1 kinase is important for centriole assembly, but how Mps1 is delivered to centrosomes is unknown. Here we have identified a centrosome localization domain within Mps1 and identified the mitochondrial porin VDAC3 as a protein that binds to this region of Mps1. Moreover, we show that VDAC3 is present at the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes.  相似文献   
55.
  1. Download : Download high-res image (339KB)
  2. Download : Download full-size image
  相似文献   
56.
Succession is a key ecological process that supports our understanding of community assembly and biotic interactions. Dispersal potential and dispersal strategies, such as wind- or animal-dispersal, have been assumed to be highly relevant for the success of plant species during succession. However, research yielded varying results on changes in dispersal modes between successional stages. Here, we test the hypotheses that (a) vascular plant species that use a number of dispersal modes dominate in early stages of succession while species specialized on one/few dispersal modes increase in abundance towards later stages of succession; (b) species well adapted to wind-dispersal (anemochory) will peak in abundance in early successional stages and (c) species well adapted to adhesive dispersal (epizoochory) will increase with proceeding succession. We test these hypotheses in four sites within agriculturally dominated landscapes in Germany. Agricultural use in these sites was abandoned 20–28 years ago, leaving them to secondary succession. Sites have been monitored for plant biodiversity ever since. We analyze changes in plant species richness and abundance, number of dispersal modes and two ranking indices for wind- and adhesive dispersal by applying generalized linear mixed-effect models. We used both abundance-weighted and unweighted dispersal traits in order to gain a comprehensive picture of successional developments. Hypothesis (a) was supported by unweighted but not abundance-weighted data. Anemochory showed no consistent changes across sites. In contrast, epizoochory (especially when not weighted by abundance) turned out to be an indicator of the transition from early to mid-successional stages. It increased for the first 9–16 years of succession but declined afterwards. Species richness showed an opposing pattern, while species abundance increased asymptotically. We suggest that plant-animal interactions play a key role in mediating these processes: By importing seeds of highly competitive plant species, animals are likely to promote the increasing abundance of a few dominant, highly epizoochorous species. These species outcompete weak competitors and species richness decreases. However, animals should as well promote the subsequent increase of species richness by disturbing the sites and creating small open patches. These patches are colonized by weaker competitors that are not necessarily dispersed by animals. The changes in the presence of epizoochorous species indicate the importance of plant traits and related plant–animal interactions in the succession of plant communities.  相似文献   
57.
58.
The (Bi,Sb)2Te3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti3C2Tx) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti3C2Tx with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti3C2Tx with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti3C2Tx/BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.  相似文献   
59.
To establish infection, plant viruses are evolutionarily empowered with the ability to spread intercellularly. Potyviruses represent the largest group of known plant-infecting RNA viruses, including many agriculturally important viruses. To better understand intercellular movement of potyviruses, we used turnip mosaic virus (TuMV) as a model and constructed a double-fluorescent (green and mCherry) protein-tagged TuMV infectious clone, which allows distinct observation of primary and secondary infected cells. We conducted a series of deletion and mutation analyses to characterize the role of TuMV coat protein (CP) in viral intercellular movement. TuMV CP has 288 amino acids and is composed of three domains: the N-terminus (amino acids 1–97), the core (amino acids 98–245), and the C-terminus (amino acids 246–288). We found that deletion of CP or its segments amino acids 51–199, amino acids 200–283, or amino acids 265–274 abolished the ability of TuMV to spread intercellularly but did not affect virus replication. Interestingly, deletion of amino acids 6–50 in the N-terminus domain resulted in the formation of aberrant virions but did not significantly compromise TuMV cell-to-cell and systemic movement. We identified the charged residues R178 and D222 within the core domain that are essential for virion formation and TuMV local and systemic transport in plants. Moreover, we found that trans-expression of the wild-type CP either by TuMV or through genetic transformation-based stable expression could not rescue the movement defect of CP mutants. Taken together these results suggest that TuMV CP is not essential for viral genome replication but is indispensable for viral intercellular transport where only the cis-expressed CP is functional.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号