首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13907篇
  免费   1386篇
  国内免费   2516篇
  2024年   44篇
  2023年   234篇
  2022年   320篇
  2021年   438篇
  2020年   526篇
  2019年   652篇
  2018年   658篇
  2017年   548篇
  2016年   577篇
  2015年   567篇
  2014年   766篇
  2013年   1020篇
  2012年   622篇
  2011年   730篇
  2010年   582篇
  2009年   778篇
  2008年   735篇
  2007年   776篇
  2006年   699篇
  2005年   668篇
  2004年   544篇
  2003年   503篇
  2002年   455篇
  2001年   384篇
  2000年   346篇
  1999年   326篇
  1998年   283篇
  1997年   290篇
  1996年   273篇
  1995年   248篇
  1994年   210篇
  1993年   208篇
  1992年   222篇
  1991年   153篇
  1990年   175篇
  1989年   161篇
  1988年   143篇
  1987年   137篇
  1986年   110篇
  1985年   141篇
  1984年   110篇
  1983年   76篇
  1982年   127篇
  1981年   76篇
  1980年   54篇
  1979年   35篇
  1978年   24篇
  1977年   15篇
  1975年   8篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Urban  L.  Barthélémy  L.  Bearez  P.  Pyrrha  P. 《Photosynthetica》2001,39(2):275-281
Gas exchange and chlorophyll (Chl) fluorescence were measured on young mature leaves of rose plants (Rosa hybrida cvs. First Red and Twingo) grown in two near-to-tight greenhouses, one under control ambient CO2 concentration, AC (355 µmol mol–1) and one under CO2 enrichment, EC (700 µmol mol–1), during four flushes from late June to early November. Supply of water and mineral elements was non-limiting while temperature was allowed to rise freely during daytime. Leaf diffusive conductance was not significantly reduced at EC but net photosynthetic rate increased by more than 100 %. Although the concentration of total non-structural saccharides was substantially higher in the leaves from the greenhouse with EC, PS2 (quantum efficiency of radiation use) around noon was not significantly reduced at EC indicating that there was no down-regulation of electron transport. Moreover, CO2 enrichment did not cause any increase in the risk of photo-damage, as estimated by the 1 – qP parameter. Non-photochemical quenching was even higher in the greenhouse with EC during the two summer flushes, when temperature and photosynthetic photon flux density (PPFD) were the highest. Hence rose photosynthesis benefits strongly from high concentrations of atmospheric CO2 at both high and moderate temperatures and PPFD.  相似文献   
982.

Aim

To demonstrate a new and more general model of the species–area relationship that builds on traditional models, but includes the provision that richness may vary independently of island area on relatively small islands (the small island effect).

Location

We analysed species–area patterns for a broad diversity of insular biotas from aquatic and terrestrial archipelagoes.

Methods

We used breakpoint or piecewise regression methods by adding an additional term (the breakpoint transformation) to traditional species–area models. The resultant, more general, species–area model has three readily interpretable, biologically relevant parameters: (1) the upper limit of the small island effect (SIE), (2) an estimate of richness for relatively small islands and (3) the slope of the species–area relationship (in semi‐log or log–log space) for relatively large islands.

Results

The SIE, albeit of varying magnitude depending on the biotas in question, appeared to be a relatively common feature of the data sets we studied. The upper limit of the SIE tended to be highest for species groups with relatively high resource requirements and low dispersal abilities, and for biotas of more isolated archipelagoes.

Main conclusions

The breakpoint species–area model can be used to test for the significance, and to explore patterns of variation in small island effects, and to estimate slopes of the species–area (semi‐log or log–log) relationship after adjusting for SIE. Moreover, the breakpoint species–area model can be expanded to investigate three fundamentally different realms of the species–area relationship: (1) small islands where species richness varies independent of area, but with idiosyncratic differences among islands and with catastrophic events such as hurricanes, (2) islands beyond the upper limit of SIE where richness varies in a more deterministic and predictable manner with island area and associated, ecological factors and (3) islands large enough to provide the internal geographical isolation (large rivers, mountains and other barriers within islands) necessary for in situ speciation.
  相似文献   
983.
A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241-251), computations predict that 60-80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model generates pseudo-solvent drag. The associated flux-ratio equation is derived.  相似文献   
984.
Reduced recruitment of blue oak (Quercus douglasii) seedlings in California grasslands and woodlands may result from shifts in seasonal soil water availability coincident with replacement of the native perennial herbaceous community by Mediterranean annuals. We used a combination of container and field experiments to examine the interrelationships between soil water potential, herbaceous neighborhood composition, and blue oak seedling shoot emergence and growth. Neighborhoods of exotic annuals depleted soil moisture more rapidly than neighborhoods of a perennial grass or "no-neighbor" controls. Although effects of neighborhood composition on oak seedling root elongation were not statistically significant, seedling shoot emergence was significantly inhibited in the annual neighborhoods where soil water was rapidly depleted. Seedling water status directly reflected soil water potential, which also determined the extent and duration of oak seedling growth during the first year. End-of-season seedling height significantly influenced survival and growth in subsequent years. While growth and survival of blue oak seedlings may be initially constrained by competition with herbaceous species, subsequent competition with adult blue oak trees may further contribute to reduced sapling recruitment.  相似文献   
985.
986.
Freshwater ecology: changes, requirements, and future demands   总被引:5,自引:0,他引:5  
The past development and evolution of limnology as a discipline has demonstrated that experimentally controlled disturbances of parts of aquatic ecosystems are essential for quantitative evaluation of causal mechanisms governing their operation. Correlative analyses and modeling only establish hypotheses, not causality, and allow only therapeutic management applications. Rather than constantly searching for differences, commonality must be sought. Among the large diversity of species, communities, and biogeochemical processes controlling growth and reproduction, commonality emerges at the levels of regulation of metabolism. Five areas of current and future limnological research are discussed in relation to greatest needs and promise to yield insights into material and energy flows in freshwater ecosystems and their effective management: (1) coupled metabolic mutualism in the physiological ecology of microbes (viruses, bacteria, fungi, and protists) and their biogeochemical, especially organic, couplings with the environment; (2) biochemical regulation of collective metabolism, recycling, and bioavailability of nutrients and growth regulators; (3) application of genetic and molecular techniques to addressing biogeochemical, evolutionary, and pollution remediation problems; (4) recognition that the metabolism within lakes and streams is dependent upon and regulated to a major extent by organic matter of the drainage basin and especially by the land-water interface biogeochemistry; and (5) recognition that food-web alterations ("biomanipulation") are short-term, expensive therapeutic tools that may minimize effects of eutrophication but will not solve or control eutrophication. Received: October 30, 1999 / Accepted: December 6, 1999  相似文献   
987.
小麦条锈病罹病植株对水分胁迫的响应   总被引:1,自引:0,他引:1  
水分胁迫时,小麦条锈病病叶的叶片扩散阻力(LDR)明显增大,蒸腾速率(Tp)、相对含水量(RWC)、水势(ψw)、渗透势(ψπ)和压力势(ψp)明显降低。亲和与不亲和性反应寄主病叶对水分胁迫的反应明显不同。亲和性反应寄主叶片在水分胁迫时表现出较低的反应型,产孢期推迟;Tp、LDR、RWC、ψw、ψp和ψπ在产孢前轻微下降或升高;在开始产孢后病叶Tp急剧升高,LDR、Tp、RWC、ψw、ψπ和ψp大幅降低,在健叶尚可有效控制水分蒸腾散失时病叶已丧失了这种能力。不亲和性反应寄主病叶的蒸腾作用在显症期亦有轻微变化,但之后病叶Tp、LDR、RWC和ψw渐趋健叶水平,并保持了较健叶更低的ψπ和更高的ψw,具备了更强的水分调控能力。病株健叶与病叶具有相似的气孔行为。  相似文献   
988.
Gilbert  M.  Domin  A.  Becker  A.  Wilhelm  C. 《Photosynthetica》2000,38(1):111-126
Primary productivity in marine waters is widely estimated by the measurements of 14C incorporation, the underwater light climate, and the absorption spectra of phytoplankton. In bio-optical models the quantum efficiency of carbon fixation derived from 14C incorporation rates, the photosynthetically absorbed radiation derived from the underwater light climate, and the phytoplankton absorption spectra are used to calculate time- and depth-integrated primary productivity. Due to the increased sensitivity of commercially available fluorometers, chlorophyll a in vivo fluorescence became a new tool to assess the photosynthetic activity of phytoplankton. Since fluorescence data yield only relative photosynthetic electron transport rates, a direct conversion into absolute carbon fixation rates is not possible. Here, we report a procedure how this problem can be adressed in freshwater phytoplankton. We adapted a marine bio-optical model to the freshwater situation and tested if this model yields realistic results when applied to a hypertrophic freshwater reservoir. Comparison of primary productivity derived from 14C incorporation to primary productivity derived from Chl a fluorescence showed that the conversion of fluorescence data into carbon fixation rates is still an unsolved problem. Absolute electron transport rates calculated from fluorescence data tend to overestimate primary production. We propose that the observed differences are caused mainly by neglecting the package effect of pigments in phytoplankton cells and by non-carbon related electron flow (e.g., nitrogen fixation). On the other hand, the 14C incorporation rates can be artificially influenced by "bottle effects", especially near the water surface, where photoinhibition, photorespiration, and Mehler reaction can play a major role.  相似文献   
989.
The human small GTPase, RhoA, expressed in Saccharomyces cerevisiae is post-translationally processed and, when co-expressed with its cytosolic inhibitory protein, RhoGDI, spontaneously forms a heterodimer in vivo. The RhoA/RhoGDI complex, purified to greater than 98% at high yield from the yeast cytosolic fraction, could be stoichiometrically ADP-ribosylated by Clostridium botulinum C3 exoenzyme, contained stoichiometric GDP, and could be nucleotide exchanged fully with [3H]GDP or partially with GTP in the presence of submicromolar Mg2+. The GTP-RhoA/RhoGDI complex hydrolyzed GTP with a rate constant of 4.5 X 10(-5) s(-1), considerably slower than free RhoA. Hydrolysis followed pseudo-first-order kinetics indicating that the RhoA hydrolyzing GTP was RhoGDI associated. The constitutively active G14V-RhoA mutant expressed as a complex with RhoGDI and purified without added nucleotide also bound stoichiometric guanine nucleotide: 95% contained GDP and 5% GTP. Microinjection of the GTP-bound G14V-RhoA/RhoGDI complex (but not the GDP form) into serum-starved Swiss 3T3 cells elicited formation of stress fibers and focal adhesions. In vitro, GTP-bound-RhoA spontaneously translocated from its complex with RhoGDI to liposomes, whereas GDP-RhoA did not. These results show that GTP-triggered translocation of RhoA from RhoGDI to a membrane, where it carries out its signaling function, is an intrinsic property of the RhoA/RhoGDI complex that does not require other protein factors or membrane receptors.  相似文献   
990.
We present a model for the skeletal muscle troponin-C (TnC)/troponin-I (TnI) interaction, a critical molecular switch that is responsible for calcium-dependent regulation of the contractile mechanism. Despite concerted efforts by multiple groups for more than a decade, attempts to crystallize troponin-C in complex with troponin-I, or in the ternary troponin-complex, have not yet delivered a high-resolution structure. Many groups have pursued different experimental strategies, such as X-ray crystallography, NMR, small-angle scattering, chemical cross-linking, and fluorescent resonance energy transfer (FRET) to gain insights into the nature of the TnC/TnI interaction. We have integrated the results of these experiments to develop a model of the TnC/TnI interaction, using an atomic model of TnC as a scaffold. The TnI sequence was fit to each of two alternate neutron scattering envelopes: one that winds about TnC in a left-handed sense (Model L), and another that winds about TnC in a right-handed sense (Model R). Information from crystallography and NMR experiments was used to define segments of the models. Tests show that both models are consistent with available cross-linking and FRET data. The inhibitory region TnI(95-114) is modeled as a flexible beta-hairpin, and in both models it is localized to the same region on the central helix of TnC. The sequence of the inhibitory region is similar to that of a beta-hairpin region of the actin-binding protein profilin. This similarity supports our model and suggests the possibility of using an available profilin/actin crystal structure to model the TnI/actin interaction. We propose that the beta-hairpin is an important structural motif that communicates the Ca2+-activated troponin regulatory signal to actin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号