首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13907篇
  免费   1386篇
  国内免费   2516篇
  2024年   44篇
  2023年   234篇
  2022年   320篇
  2021年   438篇
  2020年   526篇
  2019年   652篇
  2018年   658篇
  2017年   548篇
  2016年   577篇
  2015年   567篇
  2014年   766篇
  2013年   1020篇
  2012年   622篇
  2011年   730篇
  2010年   582篇
  2009年   778篇
  2008年   735篇
  2007年   776篇
  2006年   699篇
  2005年   668篇
  2004年   544篇
  2003年   503篇
  2002年   455篇
  2001年   384篇
  2000年   346篇
  1999年   326篇
  1998年   283篇
  1997年   290篇
  1996年   273篇
  1995年   248篇
  1994年   210篇
  1993年   208篇
  1992年   222篇
  1991年   153篇
  1990年   175篇
  1989年   161篇
  1988年   143篇
  1987年   137篇
  1986年   110篇
  1985年   141篇
  1984年   110篇
  1983年   76篇
  1982年   127篇
  1981年   76篇
  1980年   54篇
  1979年   35篇
  1978年   24篇
  1977年   15篇
  1975年   8篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Two samples of red soil, one from Gushikawa Recreation Center (GRC) and one from Okinawa Royal Golf Club (ORGC), were examined for particle size distribution, textures, minerals, and chemical compositions. The effects of particle size and grinding of clay minerals on pH, electrical conductivity (EC), and dissolved chemical species were studied in deionized water and river water. The results of red soil solutions were compared with those of acidic waters found in red soil dominated areas. The minimum pH values of soil solutions extracted by deionized water were 4.38–5.36 and 5.16–5.89 and the maximum values of EC were 4.91–16.98mSm–1 and 3.54–11.23mSm–1 for GRC and ORGC, respectively. In the river water samples equilibrated with red soils, the minimum pH values were 4.48–5.10 and 4.77–5.91 and the maximum EC values were 19.6–34.2mSm–1 and 17.5–25.0mSm–1 for GRC and ORGC, respectively. The values of pH and EC varied with the soil–solution ratio and the particle size. The chemical composition of river water without mixing with red soil shows Na+K+ and Ca2+Mg2+. After mixing with red soil, the trend of the concentrations changed to Na+K+ and Mg2+Ca2+, which is the same as that of soil solutions in deionized water as well as that of acidic waters found in the red soil area. The pH of the acidic waters was 4.95–5.81 and EC was 7.76–30.0mSm–1. Laboratory experimental results agreed well with those found in the field in terms of trend of concentrations of the chemical species and pH. Therefore, the results of this study suggest that the low pH and trend of the concentrations of chemical species of the acidic waters found in the red soil dominated areas were the result of the interaction of natural water and red soil.  相似文献   
962.
From a mRNA of the brain of Bombyx mori, we isolated 8 cDNA clones (BRabs), each of which encodes a different member of Rab-protein family. Four of them have more than 80% amino acid identity to the corresponding members of Drosophila Rab proteins. The other 4 proteins show low sequence similarity to any of the known Rab proteins. However, all of them contain the region conserved in rab protein. Using RACE (Rapid Amplification of cDNA ends), the one full-length cDNA clone (BRab14) was isolated. The clone was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. After purification, the fusion protein was cut with protease to remove GST-Tag and applied to a glutathione S-Sepharose column. The protein bound [(3)H]-GDP with association constant of 1.02 x 10(11) M(-1). Further, the protein was phosphorylated by protein kinase. This result suggests that Rab protein in the brain of Bombyx mori binds GDP or GTP and its function is regulated by phosphorylation.  相似文献   
963.
Models of water uptake in mixed stands of vegetation commonly assume that water is partitioned among competing root systems in proportion to relative root length densities. Such an approach assumes implicitly that roots of different species have equivalent hydraulic properties. This was tested for root systems of Grevillea robustaA. Cunn. and maize (Zea maysL.) at a semi-arid site in Kenya. The hydraulic conductances for roots of both species were measured in situat the scale of the whole root or root system using a high pressure flow meter (HPFM). Hydraulic conductivities (r) were expressed per unit root length. Root lengths were estimated for maize plants by soil coring and for G. robustausing a fractal branching model calibrated against soil coring. Mean r was 1.88×10–7 ±0.28×10–7kg s–1 MPa–1 m–1 for G. robustaand 1.25×10–7 ±0.13×10–7kg s–1 MPa–1 m–1 for maize. Values of r were not significantly different (P<0.05), suggesting that the assumption of hydraulic equivalence for root systems of the two species may be valid, at least when hydrostatic gradients are the major driving force for water uptake. Differences in conductivities between these species could arise, however, because of variation in the hydraulic properties of roots not accounted for here, for example because of root age, phenology or responses to the soil environment.  相似文献   
964.
965.
A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.  相似文献   
966.
This historical minireview describes basic lines of progress in our understanding of the functional pattern of photosynthetic water oxidation and the structure of the Photosystem II core complex. After a short introduction into the state of the art about 35 years ago, results are reviewed that led to identification of the essential cofactors of this process and the kinetics of their reactions. Special emphasis is paid on the flash induced oxygen measurements performed by Pierre Joliot (in Paris, France) and Bessel Kok (Baltimore, MD) and their coworkers that led to the scheme, known as the Kok-cycle. These findings not only unraveled the reaction pattern of oxidation steps leading from water to molecular oxygen but also provided the essential fingerprint as prerequisite for studying individual redox reactions. Starting with the S. Singer and G. Nicolson model of membrane organization, attempts were made to gain information on the structure of the Photsystem II complex that eventually led to the current stage of knowledge based on the recently published X-ray crystal structure of 3.8 A resolution in Berlin (Germany).With respect to the mechanism of water oxidation, the impact of Gerald T. Babcock's hydrogen abstractor model and all the considerations of electron/proton transfer coupling are outlined. According to my own model cosiderations, the protein matrix is not only a 'cofactor holder' but actively participates by fine tuning via hydrogen bond networks, playing most likely an essential role in water substrate coordination and in oxygen-oxygen bond formation as the key step of the overall process.  相似文献   
967.
Small cell lung cancer (SCLC) is a rapidly progressive disease with ultimate poor outcome. SCLC has been shown to interact closely with the stromal and extracellular matrix (ECM) components of the diseased host. ECM consists of type I/IV collagen, laminin, vitronectin, and fibronectin (FN) among others. Herein, we investigated the behavior of a SCLC cell line (NCI-H446) on FN-coated surface. Over a course of 72 h, FN (10 micro g/ml) caused both increased survival and proliferation of NCI-H446 cells. Survival under serum-starved conditions increased 1.44-fold and proliferation in the presence of fetal calf serum increased by 1.30-fold. The phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 reduced both survival and proliferation of NCI-H446 cells (0.48- and 0.27-fold, respectively), even on FN-coated surface. We next determined the effects of FN on cytoskeletal function such as cell motility/morphology and adhesion. Over a course of 24 h, FN reduced aggregation of NCI-H446 cells and induced flattened cellular morphology with neurite-like projections after 1 h, however, in the presence of LY294002, the cells rounded up. Adhesion of NCI-H446 cells also increased with FN (4.47-fold) which was abrogated with LY294002 treatment. This correlated with phosphorylation of the cytoskeletal protein p125FAK, on Tyr397, Tyr861 and Ser843 residues with FN. Even in the presence of LY294002, these serine/tyrosine residues were still phosphorylated on FN-coated surface. In contrast, the focal adhesion protein paxillin was not phosphorylated at Tyr31 with FN. In summary, FN stimulation of SCLC cells leads to enhancement of viability and changes in cytoskeletal function that are partially mediated through the PI3-K pathway.  相似文献   
968.
Jiang D  Ying W  Lu Y  Wan J  Zhai Y  Liu W  Zhu Y  Qiu Z  Qian X  He F 《Proteomics》2003,3(5):724-737
Very little is currently known about mechanisms underlying cancer metastasis. In the present study, metastasis-associated proteomes were separated and identified by comparative proteomic analysis, and the metastasis-related function of candidate protein interleukin-18 (IL-18) was further elucidated. First, a pair of highly and poorly metastatic sublines (termed PLA801D and PLA801C, respectively), originating from the same parental PLA801 cell line, was identified by spontaneous tumorigenicity and metastasis in vivo and characterized by metastatic phenotypes analysis in vitro. Subsequently, a proteomic approach was used to compare the protein expression profiles between PLA801C and PLA801D sublines. Eleven proteins were identified and further verified by one-dimensional Western blotting, Northern blot and/or semiquantitative reverse transciptase polymerase chain reaction analysis. Compared with those in poorly metastatic PLA801C subline, cytokeratin 18, tissue transglutaminase, Rho GDP-dissociation inhibitor 1, tropomyosin, fibroblast type, IL-18 and annexin I were significantly up-regulated, while protein disulfide isomerase, heat shock protein 60, peroxiredoxin 1, chlorine intracellular channel protein 1 (CLI1) and creatine kinase, B chain were significantly down-regulated in the highly metastatic PLA801D subline. Intriguingly, all the identified candidate proteins except for CLI1 have been shown to be somehow associated with distinct aspects of tumor metastasis such as cell growth, motility, invasion, adhesion, apoptosis and tumor immunity, etc. Considering that IL-18 was present in highly metastatic PLA801D but absent in poorly metastatic PLA801C, the association of IL-18 with metastasis was further elucidated by introducing IL-18 sense/IL-18 antisense into PLA801C/PLA801D sublines simultaneously. The results demonstrated that ectopically expressed IL-18 promoted cell motility in vitro and down-regulated E-cadherin expression of PLA801C transfectants, while IL-18 antisense remarkably decreased cell invasion potency in vitro and notably increased E-cadherin expression of PLA801D transfectants, indicating that IL-18 might play a role in metastasis by inhibiting E-cadherin expression.  相似文献   
969.
When chlorine is introduced into public drinking water for disinfection, it can react with organic compounds in surface waters to form toxic by-products such as 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX). We investigated the effect of exposure to MX on cytochrome P450 2E1 (CYP2E1)-like activity and total glutathione (GSH) in the liver of the small fish model, medaka (Oryzias latipes). The multi-site carcinogen methylazoxymethanol acetate (MAMAc) was the positive control compound. Both medaka liver microsome preparations and S-9 fractions catalyzed the hydroxylation of p-nitrophenol (PNP), suggesting CYP2E1-like activity in the medaka. Male medaka exposed for 96 h to the CYP2E1 inducers ethanol and acetone under fasted conditions showed significant increases in PNP-hydroxylation activity. Furthermore, total reduced hepatic GSH was reduced in fish fasted for 96 h, indicating that normal feeding is a factor in maintaining xenobiotic defenses. Exposure to MX and MAMAc induced significant increases in hepatic CYP2E1-like activity, however MX exposure did not alter hepatic GSH levels. These data strengthen the role of the medaka as a suitable species for examining cytochrome P450 and GSH detoxification processes and the role these systems play in chemical carcinogenesis.  相似文献   
970.
The chemical compositions of ground water and organic matter in sediments were investigated at a sandy shore of Tokyo Bay, Japan to determine the fate of ground water NO3 . On the basis of Cl distribution in ground water, the beach was classified into freshwater (FR)-, transition (TR)-, and seawater (SW)-zones from the land toward the shoreline. The NO3 and N2O did not behave conservatively with respect to Cl during subsurface mixing of freshwater and seawater, suggesting NO3 consumption and N2O production in the TR-zone. Absence of beach vegetation indicated that NO3 assimilation by higher plants was not as important as NO3 sink. Low NH4 + concentrations in ground water revealed little reduction of NO3 to NH4 +. These facts implied that microbial denitrification and assimilation were the likely sinks for ground water NO3 . The potential activity and number of denitrifiers in water-saturated sediment were highest in the low-chlorinity part of the TR-zone. The location of the highest potential denitrification activity (DN-zone) overlapped with that of the highest NO3 concentration. The C/N ratio and carbon isotope ratio (13C) of organic matter in sediment (< 100 -m) varied from 12.0 to 22.5 and from –22.5 to –25.5, respectively. The 13C value was inversely related to the C/N ratio (r 2 = 0.968, n = 11), which was explained by the mixing of organic matters of terrestrial and marine origins. In the DN-zone, the fine sediments were rich in organic matters with high C/N ratios and low 13C values, implying that dissolved organic matters of terrestrial origin might have been immobilized under slightly saline conditions. A concurrent supply of NO3 and organic matter to the TR-zone by ground water discharge probably generates favorable conditions for denitrifiers. Ground water NO3 discharged to the beach is thus partially denitrified and fixed as microbial biomass before it enters the sea. Further studies are necessary to determine the relative contribution of these processes for NO3 removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号