首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8944篇
  免费   552篇
  国内免费   408篇
  2024年   17篇
  2023年   152篇
  2022年   242篇
  2021年   298篇
  2020年   336篇
  2019年   534篇
  2018年   498篇
  2017年   343篇
  2016年   309篇
  2015年   276篇
  2014年   642篇
  2013年   830篇
  2012年   362篇
  2011年   529篇
  2010年   365篇
  2009年   389篇
  2008年   440篇
  2007年   458篇
  2006年   337篇
  2005年   346篇
  2004年   235篇
  2003年   236篇
  2002年   173篇
  2001年   116篇
  2000年   117篇
  1999年   112篇
  1998年   131篇
  1997年   90篇
  1996年   80篇
  1995年   103篇
  1994年   57篇
  1993年   70篇
  1992年   67篇
  1991年   37篇
  1990年   42篇
  1989年   53篇
  1988年   41篇
  1987年   39篇
  1986年   44篇
  1985年   53篇
  1984年   62篇
  1983年   43篇
  1982年   42篇
  1981年   33篇
  1980年   43篇
  1979年   17篇
  1978年   10篇
  1977年   12篇
  1974年   12篇
  1973年   14篇
排序方式: 共有9904条查询结果,搜索用时 31 毫秒
991.
992.
The MurA enzyme from Pseudomonas aeruginosa was purified to homogeneity and found to be biologically active as a UDP-N-acetylglucosamine (UNAG) enolpyruvyl transferase in a coupled enzyme assay where ATPase activity was measured by the release of inorganic phosphate. A microtiter plate assay coupled to competitive biopanning using the UDP-N-acetylglucosamine was used to screen 109 C-7-C and 12-mers peptides from phage display libraries. From 60 phage-encoded peptides identified after the fourth round of biopanning, deduced amino acid sequences were aligned and two peptides were synthesized and tested for inhibition of the MurA-catalyzed reaction. The PEP 1354 peptide inhibited the ATPase activity of MurA with an IC50 value of 200 μM and was found to be a competitive inhibitor of UNAG. The pre-incubation of MurA with inhibitor indicated a time-independent inhibition. This time-dependent inhibition is the first report of peptide inhibitors of MurA, which represent the scaffold for the synthesis of inhibitory peptidomimetic molecules.  相似文献   
993.
The development of the hydra's head and its hypostome has been studied at the molecular level. Many genes have been cloned from hydra as potential candidates that control the development of its head. Much work was performed on the mechanisms controlling expression of these genes in the position-dependent manner. Moreover, there have been data to support the involvement of three main signaling pathways that involve PKC, SRC, and PI3K kinases in the regulation of the head formation and in the expression of several head-specific genes. In this report, we present data supporting the participation of these three signaling pathways on the development of the hypostome. We used grafting experiments and inhibitors of the specific kinases to show the participation of these enzymes in hypostome formation. From our results, we postulate that these signal transduction pathways regulate the very early stages of the head development, most likely at the point when the cells start to differentiate to form the head organizer.  相似文献   
994.
Seven new trypsin inhibitors, CyPTI I–VII, were purified from ripe seeds of Cyclanthera pedata by affinity chromatography on immobilized chymotrypsin in the presence of 5 M NaCl followed by preparative native PAGE at pH 8.9. The CyPTIs (Cyclanthera pedata trypsin inhibitors) belong to a well-known squash inhibitor family. They contain 28–30 amino acids and have molecular weights from 3031 to 3367 Da. All the isolated inhibitors strongly inhibit bovine β-trypsin (Ka > 1011 M− 1) and, more weakly, bovine α-chymotrypsin (Ka ≈ 104–106 M− 1). In the presence of 3 M NaCl the association constants of CyPTIs with α-chymotrypsin increased a few hundred fold. Taking advantage of this phenomenon, a high concentration of NaCl was used to isolate the inhibitors by affinity chromatography on immobilized chymotrypsin. It was found that although one of them, CyPTI IV, had split the Asn25–Gly26 peptide bond, its inhibitory activity remained unchanged. The hydrolyzed bond is located downstream of the reactive site. Presumably, the inhibitor is a naturally occurring, double-chain protein arising during posttranslational modifications.  相似文献   
995.
Living cells oscillate between the two states of quiescence and division that stand poles apart in terms of energy requirements, macromolecular composition and structural organization and in which they fulfill dichotomous activities. Division is a highly dynamic and energy-consuming process that needs be carefully orchestrated to ensure the faithful transmission of the mother genotype to daughter cells. Quiescence is a low-energy state in which a cell may still have to struggle hard to maintain its homeostasis in the face of adversity while waiting sometimes for long periods before finding a propitious niche to reproduce. Thus, the perpetuation of single cells rests upon their ability to elaborate robust quiescent and dividing states. This led yeast and mammalian cells to evolve rigorous Start [L.H. Hartwell, J. Culotti, J. Pringle, B.J. Reid, Genetic control of the cell division cycle in yeast, Science 183 (1974) 46–51] and restriction (R) points [A.B. Pardee, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. U. S. A. 71 (1974) 1286–1290], respectively, that reduce deadly interferences between the two states by enforcing their temporal insulation though still enabling a rapid transition from one to the other upon an unpredictable change in their environment. The constitutive cells of multicelled organisms are extremely sensitive in addition to the nature of their adhering support that fluctuates depending on developmental stage and tissue specificity. Metazoan evolution has entailed, therefore, the need for exceedingly flexible anchorage-dependent R points empowered to assist cells in switching between quiescence and division at various times, places and conditions in the same organism. Programmed cell death may have evolved concurrently in specific contexts unfit for the operation of a stringent R point that increase the risk of deadly interferences between the two states (as it happens notably during development). But, because of their innate flexibility, anchorage-dependent R points have also the ability to readily adjust to a changing structural context so as to give mutated cells a chance to reproduce, thereby encouraging tumor genesis. The Rb and p53 proteins, which are regulated by the two products of the Ink4a-Arf locus [C.J. Sherr, The INK4a/ARF network in tumor suppression, Nat. Rev., Mol. Cell Biol. 2 (2001) 731–737], govern separable though interconnected pathways that cooperate to restrain cyclin D- and cyclin E-dependent kinases from precipitating untimely R point transit. The expression levels of the Ink4a and Arf proteins are especially sensitive to changes in cellular shape and adhesion that entirely remodel at the time when cells shift between quiescence and division. The Arf proteins further display an extremely high translational sensitivity and can activate the p53 pathway to delay R point transit, but, only when released from the nucleolus, ‘an organelle formed by the act of building a ribosome’ [T. Mélèse, Z. Xue, The nucleolus: an organelle formed by the act of building a ribosome, Curr. Opin. Cell Biol. 7 (1995) 319–324]. In this way, the Ink4a/Rb and Arf/p53 pathways emerge as key regulators of anchorage-dependent R point transit in mammalian cells and their deregulation is, indeed, a rule in human cancers. Thus, by selecting the nucleolus to mitigate cell cycle control by the Arf proteins, mammalian cells succeeded in forging a highly flexible R point enabling them to match cell division with a growth rate imposed by factors controlling nucleolar assembling, such as nutrients and adhesion. It is noteworthy that nutrient control of critical size at Start in budding yeast has been shown recently to be governed by a nucleolar protein interaction network [P. Jorgensen, J.L. Nishikawa, B.-J. Breitkreutz, M. Tyers, Systematic identification of pathways that couple cell growth and division in yeast, Science 297 (2002) 395–400].  相似文献   
996.
RNA interference is one of the most important mechanisms regulating gene expression. Small interfering RNAs (siRNAs) play an essential role in cell defense against virus infection or retrotransposons. The use of siRNAs gives wide opportunities for treating virus infections and cancer. RNA interference allows rapid construction of monogenic functional knockouts, thereby providing a convenient tool for researchers. The review considers the current views of the mechanisms of RNA interference and modern approaches to its practical application.  相似文献   
997.
998.
Based on a population genetic model of mixed strategies determined by alleles of small effect, we derive conditions for the evolution of social learning in an infinite-state environment that changes periodically over time. Each mixed strategy is defined by the probabilities that an organism will commit itself to individual learning, social learning, or innate behavior. We identify the convergent stable strategies (CSS) by a numerical adaptive dynamics method and then check the evolutionary stability (ESS) of these strategies. A strategy that is simultaneously a CSS and an ESS is called an attractive ESS (AESS). For certain parameter sets, a bifurcation diagram shows that the pure individual learning strategy is the unique AESS for short periods of environmental change, a mixed learning strategy is the unique AESS for intermediate periods, and a mixed learning strategy (with a relatively large social learning component) and the pure innate strategy are both AESS's for long periods. This result entails that, once social learning emerges during a transient era of intermediate environmental periodicity, a subsequent elongation of the period may result in the intensification of social learning, rather than a return to innate behavior.  相似文献   
999.
Liu CH  Wu PS 《Biotechnology letters》2006,28(21):1725-1730
There is little information available on the proteases expressed by human embryonic kidney (HEK) cells, which are often used for expression of recombinant proteins and production of adenovirus vector. The expression profile of proteases in HEK cell line was investigated using zymography, mRNA analysis, western blotting and protein array. The major protease was gelatinase A [or matrix metalloproteinase (MMP)-2]. Beside, other MMPs, such as MMP-1, -2, -3, -8, -9, -10, -13 and membrane type (MT) 1- and 3−MMP, as well as tissue inhibitors of metalloproteinase (TIMP)-1, -2 and -3, were also expressed by HEK cells. Characterization of MMP and TIMP profiles expressed by HEK cells provides the basis for degradation control of recombinant protein and adenovirus vector during culture and purification processes.  相似文献   
1000.
Theileriaparva is an intracellular protozoan parasite that causes a fatal lymphoproliferative disease of cattle known as East Coast Fever. The parasite infects host lymphocytes causing their transformation and uncontrolled proliferation. Infiltration of major organs with parasitized lymphoblasts results in most cases in death within 3 weeks. Although both T and B lymphocytes are susceptible to infection, the majority of cell lines arising from infection of peripheral blood mononuclear cells in vitro are of T cell lineage. To explore the basis of this phenotypic bias we have followed the very early stages of parasite development in vitro at the single cell level. Peripheral blood mononuclear cells were infected and stained for both surface phenotype and intracellular parasite antigen and analysed by flow cytometry. Although the parasite antigen was detected intracellularly as early as 6h p.i., our data indicate that parasite infection does not lead to cell transformation in all instances. Rather, specific cell types appear to undergo selection very early after infection and expansion of particular cell subsets results in survival and growth of only a small proportion of the cells originally parasitized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号