首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3605篇
  免费   320篇
  国内免费   252篇
  2024年   7篇
  2023年   71篇
  2022年   118篇
  2021年   148篇
  2020年   133篇
  2019年   203篇
  2018年   206篇
  2017年   107篇
  2016年   117篇
  2015年   152篇
  2014年   307篇
  2013年   302篇
  2012年   213篇
  2011年   251篇
  2010年   200篇
  2009年   197篇
  2008年   217篇
  2007年   226篇
  2006年   157篇
  2005年   151篇
  2004年   74篇
  2003年   83篇
  2002年   56篇
  2001年   37篇
  2000年   49篇
  1999年   32篇
  1998年   39篇
  1997年   27篇
  1996年   19篇
  1995年   29篇
  1994年   15篇
  1993年   20篇
  1992年   17篇
  1991年   10篇
  1990年   11篇
  1989年   18篇
  1988年   16篇
  1987年   15篇
  1986年   16篇
  1985年   20篇
  1984年   22篇
  1983年   23篇
  1982年   16篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1974年   4篇
  1972年   2篇
排序方式: 共有4177条查询结果,搜索用时 187 毫秒
791.
Significant development has been achieved in nonfullerene organic solar cells. However, most of the high‐efficiency nonfullerene systems are composed of polymer donors and fused‐ring acceptors, and only a few small molecule donors can work well. Herein, a new A–D–A small molecule donor named NDTSR with naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) as building blocks is synthesized. Two energy levels well‐matched fused‐ring acceptors ITIC and IDIC are chosen to construct all‐small‐molecule solar cells with NDTSR, respectively. When mixed with IDIC, a high power conversion efficiency (PCE) of 8.05% is achieved, which is the highest efficiency for NDT‐based small molecule donor. However, the NDTSR:ITIC system only exhibits a low PCE of 1.77%. The big difference in the performance of these two systems should be attributed to the different morphology and phase separation resulting from the crystallinity and aggregation ability of the acceptors. The results demonstrate that NDT‐based small molecule is a promising candidate donor for all‐small‐molecule systems, while the crystallinity of fused‐ring acceptors is a critical factor for optimizing the phase separation in the active layer.  相似文献   
792.
793.
Asexual bud development in the budding tunicate Polyandrocarpa misakiensis involves transdifferentiation of multipotent epithelial cells, which is triggered by retinoic acid (RA), and thrives under starvation after bud isolation from the parent. This study aimed to determine cell and molecular mechanisms of dedifferentiation that occur during the early stage of transdifferentiation. During dedifferentiation, the numbers of autophagosomes, lysosomes, and secondary lysosomes increased remarkably. Mitochondrial degradation and exosome discharge also occurred in the atrial epithelium. Autophagy-related gene 7 (Atg7) and lysosomal proton pump A gene (PumpA) were activated during the dedifferentiation stage. When target of rapamycin (TOR) inhibitor was administered to growing buds without isolating them from the parent, phagosomes and secondary lysosomes became prominent. TOR inhibitor induced Atg7 only in the presence of RA. In contrast, when growing buds were treated with RA, lysosomes, secondary lysosomes, and mitochondrial degradation were prematurely induced. RA significantly activated PumpA in a retinoid X receptor-dependent manner. Our results indicate that in P. misakiensis, TOR inhibition and RA signals act in synergy to accomplish cytoplasmic clearance for dedifferentiation.  相似文献   
794.
An exceptional catch of 97 broadnose sevengill sharks Notorynchus cepedianus in Samborombón Bay, Argentina, in 2013 is described from a single overnight gillnet fishing operation. Sixty‐five female and 32 male N. cepedianus, ranging in size between 105–201 and 112–190 cm LT, respectively, were recorded in this catch. Fishers' observations and published information suggest that this species aggregates in the area seasonally for feeding.  相似文献   
795.
We describe a new assemblage of small carbonaceous fossils (SCFs) from diagenetically minimally altered clays and siltstones of Terreneuvian age from the Lontova and Voosi formations of Estonia, Lithuania and Russia. This is the first detailed account of an SCF assemblage from the Terreneuvian and includes a number of previously undocumented Cambrian organisms. Recognizably bilaterian‐derived SCFs include abundant protoconodonts (total‐group Chaetognatha), and distinctive cuticular spines of scalidophoran worms. Alongside these metazoan remains are a range of protistan‐grade fossils, including Retiranus balticus gen. et sp. nov., a distinctive funnel‐shaped or sheet‐like problematicum characterized by terminal or marginal vesicles, and Lontohystrichosphaera grandis gen. et sp. nov., a large (100–550 μm) ornamented vesicular microfossil. Together these data offer a fundamentally enriched view of Terreneuvian life in the epicratonic seas of Baltica, from an episode where records of non‐biomineralized life are currently sparse. Even so, the recovered assemblages contain a lower diversity of metazoans than SCF biotas from younger (Stage 4) Baltic successions that represent broadly equivalent environments, echoing the diversification signal recorded in the coeval shelly and trace‐fossil records. Close comparison to the biostratigraphical signal from Fortunian small shelly fossils supports a late Fortunian age for most of the Lontova/Voosi succession, rather than a younger (wholly Stage 2) range.  相似文献   
796.
Never in mitosis A-related kinase 2A (Nek2A), a centrosomal serine/threonine kinase, is involved in mitotic progression by regulating the centrosome cycle. Particularly, Nek2A is necessary for dissolution of the intercentriole linkage between the duplicated centrosomes prior to mitosis. Nek2A activity roughly parallels its cell cycle-dependent expression levels, but the precise mechanism regulating its activity remains unclear. In this study, we found that γ-taxilin co-localized with Nek2A at the centrosome during interphase and interacted with Nek2A in yeast two-hybrid and pull-down assays and that γ-taxilin regulated centrosome disjunction in a Nek2A-dependent manner. γ-Taxilin depletion increased the number of cells with striking splitting of centrosomes. The precocious splitting of centrosomes induced by γ-taxilin depletion was attenuated by Nek2A depletion, suggesting that γ-taxilin depletion induces the Nek2A-mediated dissolution of the intercentriole linkage between the duplicated centrosomes nevertheless mitosis does not yet begin. Taken together with the result that γ-taxilin protein expression levels were decreased at the onset of mitosis, we propose that γ-taxilin participates in Nek2A-mediated centrosome disjunction as a negative regulator through its interaction with Nek2A.  相似文献   
797.
798.
799.
800.
Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark‐field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small‐angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion‐by‐ion growth mechanisms. Using cryo‐preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well‐controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the “nuclear envelope junction”. The narrow gap of this junction likely facilitates transport of Ca2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope–endoplasmic reticulum Ca2+‐store of the cell for the transport of Ca2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion‐by‐ion growth rather than by a nanoparticle accretion mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号