首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   970篇
  免费   64篇
  国内免费   48篇
  2023年   14篇
  2022年   11篇
  2021年   15篇
  2020年   31篇
  2019年   27篇
  2018年   28篇
  2017年   19篇
  2016年   27篇
  2015年   28篇
  2014年   41篇
  2013年   42篇
  2012年   28篇
  2011年   28篇
  2010年   48篇
  2009年   43篇
  2008年   47篇
  2007年   43篇
  2006年   40篇
  2005年   38篇
  2004年   34篇
  2003年   32篇
  2002年   26篇
  2001年   21篇
  2000年   29篇
  1999年   25篇
  1998年   22篇
  1997年   24篇
  1996年   19篇
  1995年   15篇
  1994年   21篇
  1993年   16篇
  1992年   28篇
  1991年   17篇
  1990年   19篇
  1989年   17篇
  1988年   19篇
  1987年   15篇
  1986年   10篇
  1985年   16篇
  1984年   18篇
  1983年   15篇
  1982年   7篇
  1981年   9篇
  1980年   3篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有1082条查询结果,搜索用时 656 毫秒
41.
Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing.  相似文献   
42.
An exact analytical solution of equations describing slow axonal transport of cytoskeletal elements (CEs) injected in an axon is presented. The equations modelling slow axonal transport are based on the stop-and-go hypothesis. The simplest model implementing this hypothesis postulates that CEs switch between pausing and running kinetic states, and that the probabilities of CE transition between these two states are described by first-order rate constants. It is assumed that initially CEs are injected such that they form a uniform pulse of a given width. All injected CEs are initially attributed to the pausing state. It is shown that within 30 s kinetic processes redistribute CEs between pausing and running states; after that the process occurs under quasi-equilibrium conditions. The parameter accessible to experiments is the total concentration of CEs (pausing plus running). As the initial rectangular-shaped pulse moves, it changes its shape to become a bell-shaped wave that spreads out as it propagates. The wave's amplitude is decreasing during the wave's propagation. It is also shown that the system forgets its initial condition, meaning that if one starts with pulses of different widths, after sometime they converge to the same bell-shaped wave.  相似文献   
43.
Electrospun nanofibres are an excellent cell culture substrate, enabling the fast and non‐disruptive harvest and transfer of adherent cells for microscopical and biochemical analyses. Metabolic activity and cellular structures are maintained during the only half a minute‐long harvest and transfer process. We show here that such samples can be optimally processed by means of cryofixation combined either with freeze‐substitution, sample rehydration and cryosection‐immunolabelling or with freeze‐fracture replica‐immunolabelling. Moreover, electrospun fibre substrates are equally suitable for complementary approaches, such as biochemistry, fluorescence microscopy and cytochemistry.  相似文献   
44.
Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel’s fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment.  相似文献   
45.
The chlorophyte microalga Lobosphaera incisa was isolated from the snowy slopes of Mt. Tateyama in Japan. This microalga stores exceptionally high amounts of the omega-6 LC-PUFA arachidonic acid in triacylglycerols, and therefore represents a potent photosynthetic source for this essential LC-PUFA. Assuming that freezing tolerance may play a role in adaptation of L. incisa to specific ecological niches, we examined the capability of L. incisa to tolerate extreme sub-zero temperatures. We report here, that the vegetative cells of L. incisa survived freezing at −20°C and −80°C (over 1 month), without cryoprotective agents or prior treatments. Cells successfully recovered upon thawing and proliferated under optimal growth conditions (25°C). However, cells frozen at −80°C showed better recovery and lower cellular ROS generation upon thawing, compared to those preserved at −20°C. Photosynthetic yield of PSII, estimated by Fv/Fm, temporarily decreased at day 1 post freezing and resumed to the original level at day 3. Interestingly, the thawed algal cultures produced a higher level of chlorophylls, exceeding the control culture. The polar metabolome of the vegetative cells comprised a range of compatible solutes, dominated by glutamate, sucrose, and proline. We posit that the presence of endogenous cryoprotectants, a rigid multilayer cell wall, the high LC-PUFA content in membrane lipids, and putative cold-responsive proteins may contribute to the retention of functionality upon recovery from the frozen state, and therefore for the survival under cryospheric conditions. From the applied perspective, this beneficial property holds promise for the cryopreservation of starter cultures for research and commercial purposes.  相似文献   
46.
47.
48.
A pectin was extracted from the peel of Citrus tankan with a yield of 2.75%. The uronic acid content was 80.0%, and the degree of methoxylation was 63.2%. The pectin was composed of D-GalA, D-Gal, L-Ara and L-Rha in the molar ratio of 100:11.3:3.6:2.6. The molecular weight was estimated to be approximately 9.2×104. The pectin formed a gel by conventional procedures.  相似文献   
49.
A methanol-utilizing phototrophic bacterium, strain M402, was isolated from surface water of an acidic hot spring. The isolated strain was identified as Rhodopseudomonas acidophila from its morphological and physiological characters. Profiles of the utilization of non-aromatic compounds as carbon sources by this strain were in good agreement with those of some strains of R. acidophila reported by Pfennig [J. Bacteriol., 99, 597 (1969)]. However, strain M402 was found to be capable of utilizing vanillic acid, vanillin, vanillyl alcohol, ferulic acid, veratric acid, syringic acid, syringal-dehyde and benzyl alcohol as carbon sources under anaerobic-light conditions. Although Pfennig did not refer to these abilities of his strains, these notable characters of strain M402 seem to be additional new characters of R. acidophila.  相似文献   
50.
Polyethylene glycol (PEG)‐based low generation dendrimers are analyzed as single excipient or combined with trehalose in relation to their structure and efficiency as enzyme stabilizers during freeze‐thawing, freeze‐drying, and thermal treatment. A novel functional dendrimer (DGo‐CD) based on the known PEG's ability as cryo‐protector and β‐CD as supramolecular stabilizing agent is presented. During freeze‐thawing, PEG and β‐CD failed to prevent catalase denaturation, while dendrimers, and especially DGo‐CD, offered the better protection to the enzyme. During freeze‐drying, trehalose was the best protective additive but DGo‐CD provided also an adequate catalase stability showing a synergistic behavior in comparison to the activities recovered employing PEG or β‐CD as unique additives. Although all the studied dendrimers improved the enzyme remaining activity during thermal treatment of freeze‐dried formulations, the presence of amorphous trehalose was critical to enhance enzyme stability. The crystallinity of the protective matrix, either of PEG derivatives or of trehalose, negatively affected catalase stability in the freeze‐dried systems. When humidified at 52% of relative humidity, the dendrimers delayed trehalose crystallization in the combined matrices, allowing extending the protection at those conditions in which normally trehalose fails. The results show how a relatively simple covalent combination of a polymer such as PEG with β‐CD could significantly affect the properties of the individual components. Also, the results provide further insights about the role played by polymer–enzyme supramolecular interactions (host–guest crosslink, hydrogen bonding, and hydrophobic interactions) on enzyme stability in dehydrated models, being the effect on the stabilization also influenced by the physical state of the matrix. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:786–795, 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号