首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   10篇
  国内免费   6篇
  369篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2015年   4篇
  2014年   11篇
  2013年   5篇
  2012年   4篇
  2011年   9篇
  2010年   7篇
  2009年   14篇
  2008年   14篇
  2007年   7篇
  2006年   13篇
  2005年   12篇
  2004年   18篇
  2003年   11篇
  2002年   18篇
  2001年   8篇
  2000年   10篇
  1999年   11篇
  1998年   7篇
  1997年   13篇
  1996年   10篇
  1995年   10篇
  1994年   15篇
  1993年   1篇
  1992年   9篇
  1991年   12篇
  1990年   6篇
  1989年   15篇
  1988年   12篇
  1987年   13篇
  1986年   6篇
  1985年   8篇
  1984年   1篇
  1983年   11篇
  1982年   10篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1978年   1篇
  1976年   3篇
  1973年   1篇
  1972年   1篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
41.
To find a simple and reliable oxygen electrode-based method to estimate the values of alternative pathway activity (V alt) and its contribution to total respiration V alt/V t) in aged potato (Solanum tuberosum L.) tuber slices, we compared conventional hydroxamate-inhibiting method, improved hydroxamate-inhibiting method with 2,6-dichlorophenol indophenol (DCPIP), and the oxygen isotope discrimination (OID) method. The values of V alt and V alt/V t obtained with an improved hydroxamate-inhibiting method with DCPIP in 12-h- and 24-h-aged slices were about twice higher than those with the conventional hydroxamate-inhibiting method. Only a relatively small difference in the values of V alt and V alt/V t obtained by the OID method and the improved hydroxamate-inhibiting method with DCPIP in 12-h and 24-h-aged slices was observed. These results indicated that the improved hydroxamate-inhibiting method with DCPIP could be considered as a new, simple, and reliable technique for the noninvasive assay of the AP activity.From Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 311–315.Original English Text Copyright © 2005 by Hou, Zhou, Kong, Liang, Zhang.This article was submitted by the authors in English.This revised version was published online in April 2005 with a corrected cover date.  相似文献   
42.
Visual stimuli are detected and conveyed over a wide dynamic range of light intensities and frequency changes by specialized neurons in the vertebrate retina. Two classes of retinal neurons, photoreceptors and bipolar cells, accomplish this by using ribbon-type active zones, which enable sustained and high-throughput neurotransmitter release over long time periods. ON-type mixed bipolar cell (Mb) terminals in the goldfish retina, which depolarize to light stimuli and receive mixed rod and cone photoreceptor input, are suitable for the study of ribbon-type synapses both due to their large size (~10-12 μm diameter) and to their numerous lateral and reciprocal synaptic connections with amacrine cell dendrites. Direct access to Mb bipolar cell terminals in goldfish retinal slices with the patch-clamp technique allows the measurement of presynaptic Ca2+ currents, membrane capacitance changes, and reciprocal synaptic feedback inhibition mediated by GABAA and GABAC receptors expressed on the terminals. Presynaptic membrane capacitance measurements of exocytosis allow one to study the short-term plasticity of excitatory neurotransmitter release 14,15. In addition, short-term and long-term plasticity of inhibitory neurotransmitter release from amacrine cells can also be investigated by recordings of reciprocal feedback inhibition arriving at the Mb terminal 21. Over short periods of time (e.g. ~10 s), GABAergic reciprocal feedback inhibition from amacrine cells undergoes paired-pulse depression via GABA vesicle pool depletion 11. The synaptic dynamics of retinal microcircuits in the inner plexiform layer of the retina can thus be directly studied.The brain-slice technique was introduced more than 40 years ago but is still very useful for the investigation of the electrical properties of neurons, both at the single cell soma, single dendrite or axon, and microcircuit synaptic level 19. Tissues that are too small to be glued directly onto the slicing chamber are often first embedded in agar (or placed onto a filter paper) and then sliced 20, 23, 18, 9. In this video, we employ the pre-embedding agar technique using goldfish retina. Some of the giant bipolar cell terminals in our slices of goldfish retina are axotomized (axon-cut) during the slicing procedure. This allows us to isolate single presynaptic nerve terminal inputs, because recording from axotomized terminals excludes the signals from the soma-dendritic compartment. Alternatively, one can also record from intact Mb bipolar cells, by recording from terminals attached to axons that have not been cut during the slicing procedure. Overall, use of this experimental protocol will aid in studies of retinal synaptic physiology, microcircuit functional analysis, and synaptic transmission at ribbon synapses.  相似文献   
43.
The release of the inhibitory neurotransmitter GABA is generally enhanced under potentially cell-damaging conditions. The properties and regulation of preloaded [3H]GABA release from mouse hippocampal slices were now studied in free radical-containing medium in a superfusion system. Free radical production was induced by 0.01% of H2O2 in the medium. H2O2 markedly potentiated GABA release, which was further enhanced about 1.5-fold by K+ stimulation (50 mM). In Ca2+-free media this stimulation was not altered, indicating that the release was mostly Ca2+-independent. Moreover, omission of Na+ increased the release, suggesting that it is mediated by Na+-dependent transporters operating outwards, a conception confirmed by the enhancement with GABA homoexchange. Inhibition of the release with the ion channel inhibitors diisothiocyanostilbene-2,2′-disulphonate and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulphonate indicates that Cl channels also participate in the process. This release was not modified by the adenosine receptor (A1 and A2a) agonists and ionotropic glutamate receptor agonists kainate, N-methy-d-aspartate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, whereas the agonists of metabotropic glutamate receptors of group I [(S)-3,5-dihydroxyphenylglycine] and of group II [(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] enhanced it by receptor-mediated mechanisms, the effects being abolished by their respective antagonists. The group III agonist l(+)-2-amino-4-phosphonobutyrate reduced the evoked GABA release, but this was not affected by the antagonist. Furthermore, the release was reduced by activation of protein kinase C by 4β-phorbol 12-myristate 13-acetate and by inhibition of tyrosine kinase by genistein and of phoshoplipase by quinacrine. On the other hand, increasing cGMP levels with the phosphodiesterase inhibitor zaprinast, selective for PDE5, 6 and 9, and NO production with the NO-generating compounds hydroxylamine, sodium nitroprusside and S-nitroso-N-penicillamine enhanced the release. The regulation of GABA release induced by free radical production proved thus to be rather complex. Under potentially cell-damaging conditions, the potentiation of GABA release may be a mechanism to counteract hyperactivity and reduce the effects of excitatory amino acid release. On the other hand, reduction of GABA release could be harmful and contribute to excitotoxic damage and neuronal degeneration.  相似文献   
44.
Kruglikov  I.  Shutov  L.  Potapenko  E.  Kostyuk  P.  Voitenko  N. 《Neurophysiology》2002,34(2-3):165-167
Elevations of the cytosolic free Ca2+ concentration ([Ca2+] i ) in rat dorsal horn neurons induced by addition of ATP to the medium were compared in spinal cord slices and after isolation of the neurons. In slices, application of ATP results in an increase in the [Ca2+] i by 201 ± 12 nM, on the average; in a Ca2+ -free external solution the respective rise was 156 ± 14 nM (n = 45 of 76 examined cells), which indicate the presence of active purinergic metabotropic receptors in about 59% of the neurons. In freshly isolated neurons with absent dendrites, we found no metabotropic responses. Thus, the results confirm the conclusion on the localization of metabotropic postsynaptic purinoreceptors mostly on the dendritic tree of dorsal horn neurons.  相似文献   
45.
This study aims at elucidating the mechanism of action of extracellular fructose-1,6-diphosphate (FDP). FDP is able to inhibit Ca++ entry into the myocardial tissue with an IC50 value of 11.5 mM and in addition, it is bound by rat heart slices, the binding being activated by Zn and conditions of chemical hypoxia induced by KCN and iodoacetate. The overall effect of extracellular FDP includes an increase of frequency and amplitude of contraction of perfused heart at concentration below 1 mM, and, in general, a stimulation of the oxygen consumption of the tissue. The antihaemolytic effect of FDP suggests its action as a membrane stabilizer. The effects of extracellular FDP on the myocardial cell can be interpreted both on the basis of a limited permeability of the cell membrane to it and as a purely extracellular effect transduced through the cell membrane with a final response consisting of an increase in the intracellular FDP.  相似文献   
46.
1. Our method of real-time monitoring of dopamine release from rat striatal slices revealed that endothelin (ET)-3-induced dopamine release was inhibited by N G-methyl-L-arginine (L-NMMA; 1 mM), an inhibitor of nitric oxide (NO) synthase, while N G-methyl-D-arginine (D-NMMA; 1 mM), an inactive isomer of L-NMMA, had no effect.2. The inhibition of L-NMMA (0.1 mM) became apparent when tissues were pretreated with tetrodotoxin (1 M) for 30 min and subsequently exposed to ET-3 (4 M).3. L-NMMA (0.1 and 1 mM) dose dependently protected against ET-3-triggered hypoxic/hypoglycemic impairment of striatal responses to high K+.4. Thus, NO may work as a promoter in mediation of the stimulatory and neurotoxic action of ET-3 on the striatal dopaminergic system, presumably by interacting with interneurons in the striatum.  相似文献   
47.
Heterodera schachtii developed to maturity and reproduced on the lateral roots of defoliated sugarbeet which were buried to a depth of 2.5 cm in sterilized soil and inoculated with cysts. Nematodes did not develop on detached lateral roots or on roots of young defoliated beets which did not have a large tap root. The storage roots of large rooted plants were sliced, placed in small jars, inoculated with cysts, covered with moist granulated agar or soil and incubated at 24°C 12-62 days. The sugarbeet nematode developed in root slices of sugarbeet, red table beet, icicle and globe radish, turnip and rutabaga. Only a few males developed on slices of potato tubers. Neither males nor females developed on root slices of carrot, salsify or parsnip. H. schachtii also developed on the cut surfaces of growing sugarbeet and radish.  相似文献   
48.
The relationship between endogenous ethylene and the development and the operation of the alternative respiration pathway in aged potato (Solanum tuberosum L. ) tuber slices were investigated. During the 24 h aging period under 30 ℃, along with the great increase of the total respiratory rate (Vt) of the slices, the alternative pathway capacity (Valt) developed continuously, and the Valt/Vt values kept increasing as well. Both the alternative pathway activity (ρValt) and its contribution to Vt(ρValt/Vt) also increased gradually before 12 h of aging, but kept constant from 12 h to 24 h. The time course of the endogenous ethylene production of the aged slices was similar to the changing trends of Valt and Valt/Vt, but different from those of ρValt and ρValt/Vt values. ACC and Cu2 + treatment which stimulated ethylene production of the aged slices enhanced their Valt and Valt/ Vt values, Co2 + and Ag+ treatment resulted in a decreased effect. However, all the above treat ments of ethylene-related agents could not alter the continuously decreasing trend of the ρ value of the alternative pathway of the aged slices. And their effects on ρValt and ρValt/Vt values were only observed before 12 h of aging. These results suggested that the endogenous ethylene was essential to the development of the capacity of alternative pathway, but could only slightly influence the operation of the activity of the alternative pathway in aged potato tuber slices.  相似文献   
49.
Human organ slices, an in vitro model representing the multicellular and functional features of in vivo tissue, is a promising model for characterizing mechanisms of drug-induced organ injury and for identifying biomarkers of organ injury. Target organ injury is a significant clinical issue. In vitro models, which compare human and animal tissue to improve the extrapolation of animal in vivo studies for predicting human outcome, will contribute to improving drug candidate selection and to defining species susceptibilities in drug discovery and development programs. A critical aspect to the performance and outcome of human organ slice studies is the use of high quality tissue, and the use of culture conditions that support optimum organ slice survivability, in order to accurately reproduce mechanisms of organ injury in vitro. The attribute of organ slices possessing various cell types and interactions contributes to the overall biotransformation, inflammatory response and assessment of injury. Regional differences and changes in morphology can be readily evaluated by histology and special stains, similar to tissue obtained from in vivo studies. The liver is the major organ of which slice studies have been performed, however the utility of extra-hepatic derived slices, as well as co-cultures is increasing. Recent application of integrating gene expression, with human organ slice function and morphology demonstrate the increased potential of this model for defining the molecular and biochemical pathways leading to drug-induced tissue changes. By gaining a more detailed understanding of the mechanisms of drug-induced organ injury, and by correlating clinical measurements with drug-induced effects in the in vitro models, the vision of human in vitro models to identify more sensitive and discriminating markers of organ damage is attainable.  相似文献   
50.
Death of oligodendrocytes accompanied by destruction of neurons and axons are typical histopathological findings in cortical and subcortical grey matter lesions in inflammatory demyelinating disorders like multiple sclerosis (MS). In these disorders, mainly CD8+ T-cells of putative specificity for myelin- and oligodendrocyte-related antigens are found, so that neuronal apoptosis in grey matter lesions may be a collateral effect of these cells. Different types of animal models are established to study the underlying mechanisms of the mentioned pathophysiological processes. However, although they mimic some aspects of MS, it is impossible to dissect the exact mechanism and time course of ‘‘collateral’’ neuronal cell death. To address this course, here we show a protocol to study the mechanisms and time response of neuronal damage following an oligodendrocyte-directed CD8+ T cell attack. To target only the myelin sheath and the oligodendrocytes, in vitro activated oligodendrocyte-specific CD8+ T-cells are transferred into acutely isolated brain slices. After a defined incubation period, myelin and neuronal damage can be analysed in different regions of interest. Potential applications and limitations of this model will be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号