首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3744篇
  免费   386篇
  国内免费   337篇
  2024年   7篇
  2023年   85篇
  2022年   65篇
  2021年   113篇
  2020年   103篇
  2019年   146篇
  2018年   112篇
  2017年   128篇
  2016年   143篇
  2015年   140篇
  2014年   179篇
  2013年   212篇
  2012年   198篇
  2011年   175篇
  2010年   180篇
  2009年   204篇
  2008年   226篇
  2007年   194篇
  2006年   189篇
  2005年   175篇
  2004年   149篇
  2003年   131篇
  2002年   136篇
  2001年   111篇
  2000年   84篇
  1999年   73篇
  1998年   75篇
  1997年   66篇
  1996年   57篇
  1995年   57篇
  1994年   49篇
  1993年   43篇
  1992年   38篇
  1991年   30篇
  1990年   36篇
  1989年   26篇
  1988年   28篇
  1987年   20篇
  1986年   23篇
  1985年   48篇
  1984年   38篇
  1983年   24篇
  1982年   24篇
  1981年   19篇
  1980年   29篇
  1979年   25篇
  1978年   8篇
  1977年   13篇
  1976年   14篇
  1973年   9篇
排序方式: 共有4467条查询结果,搜索用时 390 毫秒
951.
Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close‐by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south‐western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub‐populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.  相似文献   
952.
The fitness of hybrids might be compromised as a result of intrinsic isolation and/or because they fall between ecological niches due to their intermediate phenotypes (“extrinsic isolation”). Here, we present data from several crosses (parental crosses, F1, F2, and backcrosses) between the two host races of Lochmaea capreae on willow and birch to test for extrinsic isolation, intrinsic isolation, and environmentally dependent genetic incompatibilities. We employed a reciprocal transplant design in which offspring were raised on either host plant and their survival was recorded until adulthood. We also applied joint‐scaling analysis to determine the genetic architecture of hybrid inviability. The relative fitness of the backcrosses switched between environments; furthermore, the additive genetic–environment interaction was detected as the strongest effect in our analysis. These results provide strong evidence that divergent natural selection has played a central role in the evolution of hybrid dysfunction between host races. Joint‐scaling analysis detected significant negative epistatic effects that are most evident in the poor performance of F2‐hybrids on willow, indicating signs of intrinsic isolation. We did not find any evidence that genetic incompatibilities are manifested independently of environmental conditions. Our findings suggest the outcome of natural hybridization between these host races is mainly affected by extrinsic isolation and a weak contribution of intrinsic isolation.  相似文献   
953.
Strong ecological selection on a genetic locus can maintain allele frequency differences between populations in different environments, even in the face of hybridization. When alleles at divergent loci come into tight linkage disequilibrium, selection acts on them as a unit and can significantly reduce gene flow. For populations interbreeding across a hybrid zone, linkage disequilibria between loci can force clines to share the same slopes and centers. However, strong ecological selection on a locus can also pull its cline away from the others, reducing linkage disequilibrium and weakening the barrier to gene flow. We looked for this “cline uncoupling” effect in a hybrid zone between stream resident and anadromous sticklebacks at two genes known to be under divergent natural selection (Eda and ATP1a1) and five morphological traits that repeatedly evolve in freshwater stickleback. These clines were all steep and located together at the top of the estuary, such that we found no evidence for cline uncoupling. However, we did not observe the stepped shape normally associated with steep concordant clines. It thus remains possible that these clines cluster together because their individual selection regimes are identical, but this would be very surprising given their diverse roles in osmoregulation, body armor, and swimming performance.  相似文献   
954.
Assortative mating is an important pre‐mating isolation mechanism that has been observed in some wild populations of seabirds. The Short‐tailed Albatross Phoebastria albatrus is a globally Vulnerable seabird that breeds mainly on Torishima and the Senkaku Islands in the north‐western Pacific Ocean. Our previous studies suggested that two genetically distinct populations exist, one on Torishima and the other on the Senkaku Islands. Recently, however, several un‐ringed birds in subadult plumage have been observed breeding on Torishima in the Hatsunezaki colony. As almost all birds hatched on Torishima since 1979 have been ringed, the natal site of the un‐ringed birds was suspected to be the Senkaku Islands. Genetic differences between the two populations would reveal the natal sites of un‐ringed birds. By observing the ring status (ringed or un‐ringed) of mating pairs and analysing the mitochondrial DNA (mtDNA) control region 2 of un‐ringed birds, we assessed whether birds that originated from Torishima and the Senkaku Islands achieved pre‐mating isolation. There was a small number of pairs on Torishima that consisted of one ringed and one un‐ringed bird, but the observed number was significantly lower than that expected if ringed and un‐ringed birds mated randomly. Furthermore, mtDNA analyses of nine un‐ringed birds demonstrated that all belonged to a particular haplotype clade from the Senkaku Islands. These results show that birds from Torishima and the Senkaku Islands mate assortatively but that there is incomplete pre‐mating isolation between birds from the two island groups. The pre‐mating isolation of these two populations of Short‐tailed Albatross could arise from differences in the timing of breeding and incompatibility in mating displays. As the divergence between the two populations is unlikely to be sufficient to achieve complete post‐mating isolation, the two groups are likely to be hybridizing. Further studies using molecular and/or behavioural analyses would be required to reveal the evolutionary significance of hybridization between these two populations.  相似文献   
955.
The climbing habit is a key innovation in plants: climbing taxa have higher species richness than nonclimbing sister groups. We evaluated the hypothesis that climbing plant species show greater among‐population genetic differentiation than nonclimber species. We compared the among‐population genetic distance in woody climbers (eight species, 30 populations) and trees (seven species, 29 populations) coexisting in nine communities in a temperate rainforest. We also compared within‐population genetic diversity in co‐occurring woody climbers and trees in two communities. Mean genetic distance between populations of climbers was twice that of trees. Isolation by distance (increase in genetic distance with geographic distance) was greater for climbers. Climbers and trees showed similar within‐population genetic diversity. Our longevity estimate suggested that climbers had shorter generation times, while other biological features often associated with diversification (dispersal and pollination syndromes, mating system, size, and metabolic rate) did not show significant differences between groups. We hypothesize that the greater population differentiation in climbers could result from greater evolutionary responses to local selection acting on initially higher within‐population genetic diversity, which could be driven by neutral processes associated with shorter generation times. Increased population genetic differentiation could be incorporated as another line of evidence when testing for key innovations.  相似文献   
956.
Genetic incompatibility is a hallmark of speciation. Cytonuclear incompatibilities are proposed to be among the first genetic barriers to arise during speciation. Accordingly, reproductive isolation (RI) within species should be heavily influenced by interactions between the organelle and nuclear genomes. However, there are few clear examples of cytonuclear incompatibility within a species. Here, we show substantial postzygotic RI in first‐generation hybrids between differentiated populations of an herbaceous plant (up to 92% reduction in fitness). RI was primarily due to germination and survival, with moderate RI for pollen viability. RI for survival was asymmetric and caused by cytonuclear incompatibility, with the strength of incompatibility linearly related to chloroplast genetic distance. This cytonuclear incompatibility may be the result of a rapidly evolving plastid genome. Substantial asymmetric RI was also found for germination, but was not associated with cytonuclear incompatibility, indicating endosperm or maternal‐zygote incompatibilities. These results demonstrate that cytonuclear incompatibility contributes to RI within species, suggesting that initial rates of speciation could be influenced by rates of organelle evolution. However, other genetic incompatibilities are equally important, indicating that even at early stages, speciation can be a complex process involving multiple genes and incompatibilities.  相似文献   
957.
Research in speciation genetics has uncovered many robust patterns in intrinsic reproductive isolation, and fitness landscape models have been useful in interpreting these patterns. Here, we examine fitness landscapes based on Fisher's geometric model. Such landscapes are analogous to models of optimizing selection acting on quantitative traits, and have been widely used to study adaptation and the distribution of mutational effects. We show that, with a few modifications, Fisher's model can generate all of the major findings of introgression studies (including “speciation genes” with strong deleterious effects, complex epistasis and asymmetry), and the major patterns in overall hybrid fitnesses (including Haldane's Rule, the speciation clock, heterosis, hybrid breakdown, and male–female asymmetry in the F1). We compare our approach to alternative modeling frameworks that assign fitnesses to genotypes by identifying combinations of incompatible alleles. In some cases, the predictions are importantly different. For example, Fisher's model can explain conflicting empirical results about the rate at which incompatibilities accumulate with genetic divergence. In other cases, the predictions are identical. For example, the quality of reproductive isolation is little affected by the manner in which populations diverge.  相似文献   
958.
Ecological speciation occurs when reproductive isolation evolves between populations adapting to contrasting environments. A key prediction of this process is that the fitness of hybrids between divergent populations should be reduced in each parental environment as a function of the proportion of local genes they carry, a process resulting in ecologically dependent reproductive isolation (RI). To test this prediction, we use reciprocal transplant experiments between adjacent populations of an Australian wildflower, Senecio lautus, at two locations to distinguish between ecologically dependent and intrinsic genetic reproductive barriers. These barriers can be distinguished by observing the relative fitness of reciprocal backcross hybrids, as they differ in the contribution of genes from either parent while controlling for any intrinsic fitness effects of hybridization. We show ecologically dependent fitness effects in establishment and survival of backcrosses in one transplant experiment, and growth performance in the second transplant experiment. These results suggest natural selection can create strong reproductive barriers that maintain differentiation between populations with the potential to interbreed, and implies a significant role for ecology in the evolutionary divergence of S. lautus.  相似文献   
959.
Genetic differentiation occurs when gene flow is prevented, due to reproductive barriers or asexuality. Investigating the early barriers to gene flow is important for understanding the process of speciation. Here, we therefore investigated reproductive isolation between different genetic clusters of the fungus Penicillium roqueforti, used for maturing blue cheeses, and also occurring as food spoiler or in silage. We investigated premating and postmating fertility between and within three genetic clusters (two from cheese and one from other substrates), and we observed sexual structures under scanning electron microscopy. All intercluster types of crosses showed some fertility, suggesting that no intersterility has evolved between domesticated and wild populations despite adaptation to different environments and lack of gene flow. However, much lower fertility was found in crosses within the cheese clusters than within the noncheese cluster, suggesting reduced fertility of cheese strains, which may constitute a barrier to gene flow. Such degeneration may be due to bottlenecks during domestication and/or to the exclusive clonal replication of the strains in industry. This study shows that degeneration has occurred rapidly and independently in two lineages of a domesticated species. Altogether, these results inform on the processes and tempo of degeneration and speciation.  相似文献   
960.
Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high‐ and low‐elevation plots on four different mountains situated along a 170‐km east–west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east–west isolation by distance among mountain sites. FST outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using FST outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. QSTFST tests for fitness‐related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east‐to‐west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号