首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3358篇
  免费   38篇
  国内免费   26篇
  2023年   16篇
  2022年   29篇
  2021年   33篇
  2020年   40篇
  2019年   65篇
  2018年   56篇
  2017年   21篇
  2016年   21篇
  2015年   21篇
  2014年   255篇
  2013年   280篇
  2012年   155篇
  2011年   324篇
  2010年   266篇
  2009年   225篇
  2008年   220篇
  2007年   258篇
  2006年   229篇
  2005年   203篇
  2004年   145篇
  2003年   120篇
  2002年   142篇
  2001年   21篇
  2000年   15篇
  1999年   16篇
  1998年   18篇
  1997年   8篇
  1996年   14篇
  1995年   10篇
  1994年   7篇
  1993年   3篇
  1992年   6篇
  1991年   8篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1985年   15篇
  1984年   22篇
  1983年   22篇
  1982年   8篇
  1981年   14篇
  1980年   14篇
  1979年   8篇
  1978年   14篇
  1977年   11篇
  1976年   6篇
  1975年   9篇
  1974年   7篇
  1973年   6篇
  1972年   7篇
排序方式: 共有3422条查询结果,搜索用时 328 毫秒
991.
The sphingolipidoses are a group of inherited lysosomal storage diseases in which sphingolipids accumulate due to the defective activity of one or other enzymes involved in their degradation. For most of the sphingolipidoses, little is known about the molecular mechanisms that lead to disease, which has negatively impacted attempts to develop therapies for these devastating human diseases. Use of both genetically-modified animals, ranging from mice to larger mammals, and of novel cell culture systems, is of utmost importance in delineating the molecular mechanisms that cause pathophysiology, and in providing tools that enable testing the efficacy of new therapies. In this review, we discuss eight sphingolipidoses, namely Gaucher disease, Fabry disease, metachromatic leukodystrophy, Krabbe disease, Niemann–Pick diseases A and B, Farber disease, GM1 gangliosidoses, and GM2 gangliosidoses, and describe the tools that are currently available for their study. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   
992.
The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.  相似文献   
993.
The 2-oxoglutarate (2OG)/Fe2 +-dependent oxygenases (2OG oxygenases) are a large family of proteins that share a similar overall three-dimensional structure and catalyze a diverse array of oxidation reactions. The Jumonji C (JmjC)-domain-containing proteins represent an important subclass of the 2OG oxygenase family that typically catalyze protein hydroxylation; however, recently, other reactions have been identified, such as tRNA modification. The Escherichia coli gene, ycfD, was predicted to be a JmjC-domain-containing protein of unknown function based on primary sequence. Recently, YcfD was determined to act as a ribosomal oxygenase, hydroxylating an arginine residue on the 50S ribosomal protein L-16 (RL-16). We have determined the crystal structure of YcfD at 2.7 Å resolution, revealing that YcfD is structurally similar to known JmjC proteins and possesses the characteristic double-stranded β-helix fold or cupin domain. Separate from the cupin domain, an additional globular module termed α-helical arm mediates dimerization of YcfD. We further have shown that 2OG binds to YcfD using isothermal titration calorimetry and identified key binding residues using mutagenesis that, together with the iron location and structural similarity with other cupin family members, allowed identification of the active site. Structural homology to ribosomal assembly proteins combined with GST (glutathione S-transferase)-YcfD pull-down of a ribosomal protein and docking of RL-16 to the YcfD active site support the role of YcfD in regulation of bacterial ribosome assembly. Furthermore, overexpression of YcfD is shown to inhibit cell growth signifying a toxic effect on ribosome assembly.  相似文献   
994.
995.
996.
Two synthetic analogs of camel β-endorphin, one with omission of Leu-14 and the other with omission of Asn-20, have been assayed for immunoreactivity by radioimmunoassay, opiate activity in the guinea pig ileum preparation and analgesic potency in mice. It was found that the omission analogs had no immunoreactivity, but retained significant biological activities. As far as we are aware, this is the first instance in which deletion of a single amino acid residue in a biologically active peptide abolished immunoreactivity.  相似文献   
997.
AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid β-oxidation, especially β-hydroxybutyrate, are fatty energy–supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine β-hydroxybutyrylation (Kbhb) is a β-hydroxybutyrate–mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.  相似文献   
998.
Ribosomal subunit assembly is initiated by the binding of several primary binding proteins. Results from chemical modification studies show that 16S ribosomal RNA undergoes striking structural rearrangements when protein S17 is bound. For the first time, we are able to distinguish and order these structural rearrangements by using time-dependent chemical probing. Initially, protein S17 binds to a portion of helix 11, inducing a kink-turn in that helix that bends helix 7 toward the S17-helix 11 complex in a hairpin-like manner, allowing helix 7 to bind to protein S17. This structural change is rapidly stabilized by interactions at the distal and proximal ends of both RNA helices. Identifying the dynamic nature of interactions between RNA and proteins is not only essential in unraveling ribosome assembly, but also has more general application to all protein-RNA interactions.  相似文献   
999.
1000.
Increasing evidence has confirmed that microRNAs (miRs) are involved in tumor development and progression. A previous study reported that miR-421 could serve as a diagnostic marker in patients with osteosarcoma (OS). The present study explored the potential roles of miR-421 in the regulation of cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition of OS cells. Our results showed that miR-421 was upregulated in OS tissues and cell lines (MG63, U2OS, HOS, and Saos-2) compared with the corresponding adjacent tissues or human osteoblast cells hFOB1.19, while the latent transforming growth factor β-binding protein 2 (LTBP2) expression was reduced. In MG63 and U2OS cells, CCK8 assay displayed that cell proliferation was repressed by the miR-421 inhibitor, conversely increased by miR-421 mimics. Inhibition of miR-421 promoted cell apoptosis rate, caspase 3 activity, cleaved-caspase 3 (c-caspase 3) expression, and Bax/Bcl-2 ratio, restoration of miR-421 showed the opposite functions. Suppression of miR-421 blocked migration and invasion, whereas miR-421 overexpression promoted the migration and invasion of MG63 and U2OS cells. In addition, real-time polymerase chain reaction and Western blot analysis revealed that miR-421 negatively regulated E-cadherin expression, and positively regulated the expression of N-cadherin and vimentin. The luciferase reporter assay determined that miR-421 could target LTBP2-3′-UTR, and LTBP2 expression was regulated negatively by miR-421 both in mRNA and protein levels. Depletion of LTBP2 partly abolished the biological functions of miR-421 inhibitor in OS. In conclusion, miR-421 plays an oncogenic role in OS via targeting LTBP2, suggesting that miR-421 may be a potential therapeutic target against OS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号