首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5295篇
  免费   545篇
  国内免费   330篇
  6170篇
  2024年   15篇
  2023年   91篇
  2022年   149篇
  2021年   189篇
  2020年   200篇
  2019年   229篇
  2018年   260篇
  2017年   202篇
  2016年   185篇
  2015年   195篇
  2014年   454篇
  2013年   558篇
  2012年   320篇
  2011年   249篇
  2010年   237篇
  2009年   300篇
  2008年   279篇
  2007年   295篇
  2006年   222篇
  2005年   183篇
  2004年   145篇
  2003年   157篇
  2002年   113篇
  2001年   93篇
  2000年   74篇
  1999年   70篇
  1998年   66篇
  1997年   55篇
  1996年   38篇
  1995年   30篇
  1994年   46篇
  1993年   46篇
  1992年   31篇
  1991年   36篇
  1990年   49篇
  1989年   36篇
  1988年   25篇
  1987年   28篇
  1986年   21篇
  1985年   28篇
  1984年   31篇
  1983年   16篇
  1982年   26篇
  1981年   15篇
  1980年   19篇
  1979年   15篇
  1978年   14篇
  1977年   10篇
  1976年   6篇
  1973年   6篇
排序方式: 共有6170条查询结果,搜索用时 15 毫秒
41.
Translocation of DNA and protein fibers through narrow constrictions is a ubiquitous and crucial activity of bacterial cells. Bacteria use specialized machines to support macromolecular movement. A very important step toward a mechanistic understanding of these translocation machines is the characterization of their physical properties at the single molecule level. Recently, four bacterial transport processes have been characterized by nanomanipulation at the single molecule level, DNA translocation by FtsK and SpoIIIE, DNA import during transformation, and the related process of a type IV pilus retraction. With all four processes, the translocation rates, processivity, and stalling forces were remarkably high as compared with single molecule experiments with other molecular motors. Although substrates of all four processes proceed along a preferential direction of translocation, directionality has been shown to be controlled by distinct mechanisms.  相似文献   
42.
Samuel G  Reeves P 《Carbohydrate research》2003,338(23):2503-2519
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.  相似文献   
43.
The use of whole genome amplification in the study of human disease   总被引:6,自引:0,他引:6  
The availability of large amounts of genomic DNA is of critical importance for many of the molecular biology assays used in the analysis of human disease. However, since the amount of patient tissue available is often limited and as particular foci of interest may consist of only a few hundred cells, the yield of DNA is often insufficient for extensive analysis. To address this problem, several whole genome amplification (WGA) methodologies have been developed. Initial WGA approaches were based on the polymerase chain reaction (PCR). However, recent reports have described the use of non-PCR-based linear amplification protocols for WGA. Using these methods, it is possible to generate microgram quantities of DNA starting with as little as 1mg of genomic DNA. This review will provide an overview of WGA approaches and summarize some of the uses for amplified DNA in various high-throughput genetic applications.  相似文献   
44.
Analysis of biochemicals in single cells is important for understanding cell metabolism, cell cycle, adaptation, disease states, etc. Even the same cell types exhibit heterogeneous biochemical makeup depending on their physiological conditions and interactions with the environment. Conventional methods of mass spectrometry (MS) used for the analysis of biomolecules in single cells rely on extensive sample preparation. Removing the cells from their natural environment and extensive sample processing could lead to changes in the cellular composition. Ambient ionization methods enable the analysis of samples in their native environment and without extensive sample preparation.1 The techniques based on the mid infrared (mid-IR) laser ablation of biological materials at 2.94 μm wavelength utilize the sudden excitation of water that results in phase explosion.2 Ambient ionization techniques based on mid-IR laser radiation, such as laser ablation electrospray ionization (LAESI) and atmospheric pressure infrared matrix-assisted laser desorption ionization (AP IR-MALDI), have successfully demonstrated the ability to directly analyze water-rich tissues and biofluids at atmospheric pressure.3-11 In LAESI the mid-IR laser ablation plume that mostly consists of neutral particulate matter from the sample coalesces with highly charged electrospray droplets to produce ions. Recently, mid-IR ablation of single cells was performed by delivering the mid-IR radiation through an etched fiber. The plume generated from this ablation was postionized by an electrospray enabling the analysis of diverse metabolites in single cells by LAESI-MS.12 This article describes the detailed protocol for single cell analysis using LAESI-MS. The presented video demonstrates the analysis of a single epidermal cell from the skin of an Allium cepa bulb. The schematic of the system is shown in Figure 1. A representative example of single cell ablation and a LAESI mass spectrum from the cell are provided in Figure 2.  相似文献   
45.
As part of an effort to inhibit S100B, structures of pentamidine (Pnt) bound to Ca2+-loaded and Zn2+,Ca2+-loaded S100B were determined by X-ray crystallography at 2.15 Å (Rfree = 0.266) and 1.85 Å (Rfree = 0.243) resolution, respectively. These data were compared to X-ray structures solved in the absence of Pnt, including Ca2+-loaded S100B and Zn2+,Ca2+-loaded S100B determined here (1.88 Å; Rfree = 0.267). In the presence and absence of Zn2+, electron density corresponding to two Pnt molecules per S100B subunit was mapped for both drug-bound structures. One Pnt binding site (site 1) was adjacent to a p53 peptide binding site on S100B (± Zn2+), and the second Pnt molecule was mapped to the dimer interface (site 2; ± Zn2+) and in a pocket near residues that define the Zn2+ binding site on S100B. In addition, a conformational change in S100B was observed upon the addition of Zn2+ to Ca2+-S100B, which changed the conformation and orientation of Pnt bound to sites 1 and 2 of Pnt-Zn2+,Ca2+-S100B when compared to Pnt-Ca2+-S100B. That Pnt can adapt to this Zn2+-dependent conformational change was unexpected and provides a new mode for S100B inhibition by this drug. These data will be useful for developing novel inhibitors of both Ca2+- and Ca2+,Zn2+-bound S100B.  相似文献   
46.
Allopolyploidization is widespread and has played a major role in flowering plant diversification. Genomic changes are common consequences of allopolyploidization, but their mechanisms of occurrence and dynamics over time are still poorly understood. Coffea arabica, a recently formed allotetraploid, was chosen as a model to investigate genetic changes in allopolyploid using an approach that exploits next‐generation sequencing technologies. Genes affected by putative homoeolog loss were inferred by comparing the numbers of single‐nucleotide polymorphisms detected using RNA‐seq in individual accessions of C. arabica, and between accessions of its two diploid progenitor species for common sequence positions. Their physical locations were investigated and clusters of genes exhibiting homoeolog loss were identified. To validate these results, genome sequencing data were generated from one accession of C. arabica and further analyzed. Genomic rearrangements involving homoeologous exchanges appear to occur in C. arabica and to be a major source of genetic diversity. At least 5% of the C. arabica genes were inferred to have undergone homoeolog loss. The detection of a large number of homoeologous exchange events (HEEs) shared by all accessions of C. arabica strongly reinforces the assumption of a single allopolyploidization event. Furthermore, HEEs were specific to one or a few accessions, suggesting that HEE accumulates gradually. Our results provide evidence for the important role of HEE in allopolyploid genome evolution.  相似文献   
47.
Cyclooxygenase-2 (COX-2) is overexpressed in hepatocellular carcinoma (HCC) and considered to play a role in hepatic carcinogenesis. Our aim was to examine the associations between polymorphisms in COX-2 − 765G→C and − 1195A→G and risk of HCC. We conducted a case–control study including 120 patients with HCC and 130 age- and gender-matched controls. Genotypes of the COX-2 polymorphisms − 765G→C and − 1195A→G were determined by polymerase chain reaction-based restriction fragment length polymorphism. No significant difference was observed in the genotype distribution of the − 765G→C polymorphism between patients and controls. The − 1195AA genotype was associated with an increased risk of developing HCC (OR, 2.5; 95%CI, 1.18–5.37). The A allele was present significantly more often in HCC patients (OR 1.5; 95%CI, 1.05–2.14). In conclusion, our results demonstrated that the − 1195AA genotype and A allele have an important role in HCC risk in Egyptian patients.  相似文献   
48.
Determining the energetics of the unfolded state of a protein is essential for understanding the folding mechanics of ordered proteins and the structure–function relation of intrinsically disordered proteins. Here, we adopt a coil‐globule transition theory to develop a general scheme to extract interaction and free energy information from single‐molecule fluorescence resonance energy transfer spectroscopy. By combining protein stability data, we have determined the free energy difference between the native state and the maximally collapsed denatured state in a number of systems, providing insight on the specific/nonspecific interactions in protein folding. Both the transfer and binding models of the denaturant effects are demonstrated to account for the revealed linear dependence of inter‐residue interactions on the denaturant concentration, and are thus compatible under the coil‐globule transition theory to further determine the dimension and free energy of the conformational ensemble of the unfolded state. The scaling behaviors and the effective θ‐state are also discussed.  相似文献   
49.
50.
采用酶切连接和重叠PCR连接两种方法将抗黑色素瘤单链抗体基因和去除N端信号肽的金黄色葡萄球菌肠毒素A基因进行融合,并将融合基因克隆于pET28a表达载体上,转化大肠杆菌BL21(DE3)。用NiNTA系统对表达产物进行分离、纯化。MTT法检测融合蛋白对黑色素瘤细胞的体外抑制率。结果表明6HisScFvSEA融合蛋白可在E.coli BL21(DE3)中稳定表达,表达量占菌体蛋白的30%,主要以包涵体的形式存在。融合蛋白可通过激活效应细胞对表达相关抗原的黑色素瘤细胞发挥抑制作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号