首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17738篇
  免费   1224篇
  国内免费   1083篇
  2024年   36篇
  2023年   283篇
  2022年   431篇
  2021年   580篇
  2020年   503篇
  2019年   707篇
  2018年   680篇
  2017年   470篇
  2016年   454篇
  2015年   605篇
  2014年   1078篇
  2013年   1379篇
  2012年   779篇
  2011年   890篇
  2010年   729篇
  2009年   892篇
  2008年   947篇
  2007年   910篇
  2006年   848篇
  2005年   789篇
  2004年   622篇
  2003年   585篇
  2002年   533篇
  2001年   438篇
  2000年   363篇
  1999年   344篇
  1998年   321篇
  1997年   268篇
  1996年   270篇
  1995年   209篇
  1994年   237篇
  1993年   204篇
  1992年   197篇
  1991年   170篇
  1990年   163篇
  1989年   139篇
  1988年   125篇
  1987年   128篇
  1986年   93篇
  1985年   107篇
  1984年   108篇
  1983年   48篇
  1982年   94篇
  1981年   66篇
  1980年   49篇
  1979年   46篇
  1978年   41篇
  1977年   20篇
  1975年   17篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
61.
Summary By insertional and deletional marker replacement mutagenesis the common nod region of Bradyrhizobium japonicum was examined for the presence of additional, essential nodulation genes. An open reading frame located in the 800 bp large intergenic region between nodD1 and nodA did not appear to be essential for nodulation of soybean. Furthermore, a strain with a deletion of the nodI- and nodJ-like genes downstream of nodC had a Nod+ phenotype. A mutant with a 1.7 kb deletion immediately downstream of nodD1 considerably delayed the onset of nodulation. This region carried a second copy of nodD (nodD2). A nodD1-nodD2 double mutant had a similar phenotype to the nodD2 mutant. Using a 22-mer oligonucleotide probe partially identical to the nod box sequence, a total of six hybridizing regions were identified in B. japonicum genomic DNA and isolated from a cosmid library. Sequencing of the hybridizing regions revealed that at least three of them represented true nod box sequences whereas the others showed considerable deviations from the consensus sequence. One of the three nod box sequences was the one known to be associated with nodA, whereas the other two were located 60 to 70 kb away from nif cluster I. A deletion of one of these two sequences plus adjacent DNA material mmutant 308) led to a reduced nodulation on Vigna radiata but not on soybean. Thus, this region is probably involved in the determination of host specificity.Dedicated to Prof. Giorgio Semenza on the occasion of his 60th birthday  相似文献   
62.
Summary Using cloned cDNA for human 2-macroglobulin (A2M) as a probe, mink-Chinese hamster hybrid cells were analysed. The results allowed us to assign a gene for A2M to mink chromosome 9. Breeding tests demonstrated that the Lpm-locus coding for other related -macroglobulin protein and the gene for peptidase B (PEPB) are linked 11±3 cm apart. The PEPB gene is located on mink chromosome 9, and hence, the Lpw-locus is on the same mink chromosome. The relationship of the genetic systems controlling the isotypically different -macroglobulins in mink serum are discussed.  相似文献   
63.
Summary This study was conducted to assess the genetic basis of the variability observed for the glutamate oxaloacetate transaminase (GOT), Superoxide dismutase (SOD), esterase (EST), and malate dehydrogenase (MDH) isozyme systems in different open-pollinated Vicia faba varieties. Individual plants showing contrasting zymogram patterns were simultaneously selfed and cross-combined. Crossing was unsuccessful in producing progeny, and only selfed progenies were suitable for genetical analysis of isozyme variability. Three zones of GOT activity were made visible. The isozyme of GOT-2 and GOT-3 zones were dimeric and under the control of three alleles at the Got-2 locus and two alleles at the Got-3 locus, respectively. The isozymes of the GOT-1 zone did not show any variability. Three zones of SOD isozyme activity were made visible. The isozymes occurring in the SOD-1 (chloroplastic isozyme form) and SOD-2 (cytosol isozyme form) zones were dimeric and under the control of two alleles at the Sod-1 and Sod-2 loci. The isozyme visualized in the SOD-3 zone (mitochondrial isozyme form) were tetrameric and under the control of two alleles at the Sod-3 locus. Apparently the isozymes made visible in the most anodal esterase zones EST-1, EST-2, and EST-3 were monomeric, and the occurrence of two alleles at each of two different loci explained the variability observed in the EST-2 and EST-3 zones. For MDH, only two five-banded zymogram pattern types were found, and every selfed progeny showed only one of the two zymogram type, indicating that each individual possessed fixed alleles at the loci controlling MDH isozyme. Got-2, Got-3, Sod-1, Sod-2, and Sod-3 appear to be five new isozyme gene markers that can be useful in Vicia faba breeding for linkage study, varietal fingerprinting, outcrossing rate estimate, and indirect selection for quantitative characters.  相似文献   
64.
The protein composition of nuclear matrices containing different amount of DNA was examined. It was found that, in matrices containing 2% to 80% of total DNA, the quantity of DNA-bound proteins remains relatively constant varying from 10% to 15% of total nuclear proteins. Electrophoretic patterns do not differ substantially, but autoradiograms with in vitro 125I labelled proteins show quantitative variations in the actin content. Application of radioimmunoassay (RIA) enabled to determine the exact content of actin in GAT nuclei and nuclear matrices – 5 g/ml in nuclei, of which 50% are bound to DNA and 3001o being a component of the protein part of the nuclear matrix. These results are supported by electron microscopic data, where immunogold technique was performed on thin sections and spread material. The applied methods suggest that part of the nuclear actin is tightly bound (resistant to 2 M NaCI) to DNA and represents a component of the internal nuclear matrix.  相似文献   
65.
We have analysed the expression of the 8–10 members of the gene family encoding the flavonoid biosynthetic enzyme chalcone synthase (CHS) from Petunia hybrida. During normal plant development only two members of the gene family (CHS-A and CHS-J) are expressed. Their expression is restricted to floral tissues mainly. About 90% of the total CHS mRNA pool is transcribed from CHS-A, wheares CHS-J delivers about 10% in flower corolla, tube and anthers. Expression of CHS-A and CHS-J during flower development is coordinated and (red) light-dependent. In young seedlings and cell suspension cultures expression of CHS-A and CHS-J can be induced with UV light. In addition to CHS-A and CHS-J, expression of another two CHS genes (CHS-B and CHS-G) is induced in young seedlings by UV light, albeit at a low level. In contrast to CHS genes from Leguminoseae, Petunia CHS genes are not inducible by phytopathogen-derived elicitors. Expression of CHS-A and CHS-J is reduced to a similar extent in a regulatory CHS mutant, Petunia hybrida Red Star, suggesting that both genes are regulated by the same trans-acting factors. Comparison of the promoter sequences of CHS-A and CHS-J reveals some striking homologies, which might represent cis-acting regulatory sequences.  相似文献   
66.
The Schwartz and Cantor technique for releasing and fractionating megabase-sized DNA from agarose-embedded cells is beginning to bridge the gap in resoluation between classical genetics and current molecular DNA techniques, particularly in mammalian systems. As yet no conditions have been described for preparing plant DNA that is of sufficient length to allow similar long-range restriction mapping experiments in plant systems. In this report, we describe the application of the Schwartz and Cantor technique for preparing high molecular weight DNA from embedded tomato leaf protoplasts, as well as conditions for generating and fractionating large restriction fragments, by field inversion gel electrophoresis (FIGE). The bulk of DNA released from lysed protoplasts was at least 2 Mb in size and amenable to restriction digestion as shown by hybridizing Southern blots with, among others, a probe for the Adh-2 gene of tomato. Restriction fragments as large as 700 kb were detected. Chloroplast DNA is isolated intact, amenable to restriction analysis and, in its native form, not mobile in FIGE.  相似文献   
67.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   
68.
The protein and gene sequences of the cowpea Bowman-Birk type trypsin inhibitor which confers enhanced insect resistance to transgenic tobacco plants, and of cowpea trypsin/chymotrypsin inhibitors are presented. There are regions of high conservation and high divergence within the 5 leader, mature protein and 3 non-coding regions of the Bowman-Birk inhibitors and in the genes which encode them in different members of this family within the Leguminosae. The practical implications of this finding for studies on the evolution of plants and the utilization of these genes for enhancing insect resistance is discussed.  相似文献   
69.
Calli from hypocotyl and root explants of Digitalis obscura L. showed regeneration of adventitious shoots, roots and embryos when transferred to Murashige & Skoog medium supplemented with cytokinins alone or in combination with auxins. Optimum shoot-bud formation was achieved in the presence of IAA and BA, while roots mainly appeared either in absence of growth regulators or with IAA and Kn. Embryo formation took place only in those combinations that included Kn. Embryo development was influenced by the type of auxin, and precocious germination occurred in media with NAA. Mechanically isolated cells from hypocotyl- and root-derived calli were plated in MS medium supplemented with several IAA and BA combinations. Single cells were able to proliferate forming callus within 20–30 days in culture. In order to induce organogenesis, calli were transferred to various regeneration media. Shoot-bud differentiation efficiency depended on both callus origin and medium initially used for cell culture, best results being obtained in calli grown from hypocotyl-derived cells cultured in the presence of casein hydrolysate. A further subculture to medium containing coconut milk and lower concentrations of NH4NO3 and sucrose promoted shoot development. Rooting was readily achieved upon transferring shoots onto half-strength MS medium. Plantlets were ultimately established in soil.Abbreviations BA benzyladenine - BM basal medium - CH casein hydrolysate - CM coconut milk - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid - Kn kinetin - MS Murashige & Skoog - NAA naphthaleneacetic acid  相似文献   
70.
Methane monooxygenase (MMO) is the enzyme responsible for the conversion of methane to methanol in methanotrophic bacteria. In addition, this enzyme complex oxidizes a wide range of aliphatic and aromatic compounds in a number of potentially useful biotransformations. In this study, we have used biochemical data obtained from purification and characterization of the soluble MMO from Methylococcus capsulatus (Bath), to identify structural genes encoding this enzyme by oligonucleotide probing. The genes encoding the and subunits of MMO were found to be chromosomally located and were linked in this organism. We report here on the analysis of a recombinant plasmid containing 12 kilobases of Methylococcus DNA and provide the first evidence for the localization and linkage of genes encoding the methane monooxygenase enzyme complex. DNA sequence analysis suggests that the primary structures of the and subunit of MMO are completely novel and the complete sequence of these genes is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号