首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47436篇
  免费   3542篇
  国内免费   2281篇
  2024年   86篇
  2023年   816篇
  2022年   1100篇
  2021年   1640篇
  2020年   1600篇
  2019年   2111篇
  2018年   1801篇
  2017年   1234篇
  2016年   1341篇
  2015年   1727篇
  2014年   2785篇
  2013年   3568篇
  2012年   1948篇
  2011年   2365篇
  2010年   1785篇
  2009年   2125篇
  2008年   2130篇
  2007年   2220篇
  2006年   1966篇
  2005年   1828篇
  2004年   1619篇
  2003年   1436篇
  2002年   1391篇
  2001年   1162篇
  2000年   975篇
  1999年   879篇
  1998年   833篇
  1997年   770篇
  1996年   718篇
  1995年   670篇
  1994年   627篇
  1993年   594篇
  1992年   563篇
  1991年   530篇
  1990年   413篇
  1989年   413篇
  1988年   371篇
  1987年   309篇
  1986年   258篇
  1985年   321篇
  1984年   405篇
  1983年   227篇
  1982年   304篇
  1981年   292篇
  1980年   229篇
  1979年   211篇
  1978年   152篇
  1977年   107篇
  1976年   114篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
21.
A key intermediate in translocation is an ‘unlocked state’ of the pre‐translocation ribosome in which the P‐site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two‐ and three‐colour smFRET imaging from multiple structural perspectives, EF‐G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF‐G‐bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.  相似文献   
22.
Pairs of radioimmunoassays, each of which include a two-dimensional matrix of standards, have been previously employed to resolve specificity problems in steroid immunoassay. In this study the bivariate radioimmunoassay principle has been applied to simultaneous measurement of plasma antidiuretic hormone, arginine vasopressin, and the synthetic antidiuretic agent 1-deamino-8-D-arginine vasopressin (desmopressin), by utilizing two arginine vasopressin antisera which show significantly different cross-reactivities with the synthetic analog. Data processing consists of mathematical representation of two curved dose-response surfaces followed by solution of this pair of nonlinear simultaneous equations for the unknown arginine vasopressin and desmopressin concentrations. Details of numerical procedures are given in the Appendix. The assay appears entirely adequate in terms of sensitivity, accuracy, and precision for measurement of these antidiuretic agents in clinical samples. No evidence of significant covariance in estimated concentrations could be detected but precision of estimation is (not unexpectedly) a function of the concentration of both agents. The plasma disappearance half-time of desmopressin (probably the second of a biphasic disappearance) was estimated as 37 min in one normal subject, which is in good agreement with a previously reported value of 30 min.  相似文献   
23.
24.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
25.
《Cell》2021,184(22):5670-5685.e23
  1. Download : Download high-res image (175KB)
  2. Download : Download full-size image
  相似文献   
26.
《Cell》2021,184(25):6138-6156.e28
  1. Download : Download high-res image (220KB)
  2. Download : Download full-size image
  相似文献   
27.
《Cell》2021,184(25):6081-6100.e26
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   
28.
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.  相似文献   
29.
K. Grossmann  E. W. Weiler  J. Jung 《Planta》1985,164(3):370-375
Cell division in cell suspension cultures can be completely blocked by the growth retardant tetcyclacis at a concentration of 10-4 mol l-1. In rice cells it has been demonstrated that the growth inhibition can be completely overcome by application of cholesterol independent of the duration of pretreatment with tetcyclacis. In suspension cultures of maize and soybean, too, the effect of tetcyclacis on cell division was neutralized by adding cholesterol. Other plant sterols, stigmasterol, campesterol and sitosterol were active in a decreasing order. Modifications in the cholesterol perhydro-cyclopentanophenanthrene-ring system indicate that the hydroxyl group at C-3 and the double bond between C-5 and C-6 in ring B are required for the activity. In contrast, gibberellic acid as well as ent-kaurenoic acid could not compensate retardant effects. Likewise, tetcyclasis did not change the level of gibberellins in rice cells as shown by radioimmunoassay. Thus, it is concluded that in cell suspension cultures sterols play a more important role in cell division than gibberellins.Abbreviation GAx gibberelin Ax  相似文献   
30.
《Cell reports》2020,30(5):1504-1514.e7
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号