首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2727篇
  免费   145篇
  国内免费   189篇
  3061篇
  2023年   25篇
  2022年   27篇
  2021年   30篇
  2020年   54篇
  2019年   75篇
  2018年   60篇
  2017年   54篇
  2016年   73篇
  2015年   66篇
  2014年   80篇
  2013年   149篇
  2012年   60篇
  2011年   89篇
  2010年   49篇
  2009年   87篇
  2008年   85篇
  2007年   90篇
  2006年   104篇
  2005年   121篇
  2004年   88篇
  2003年   107篇
  2002年   105篇
  2001年   86篇
  2000年   88篇
  1999年   66篇
  1998年   84篇
  1997年   66篇
  1996年   67篇
  1995年   70篇
  1994年   93篇
  1993年   93篇
  1992年   77篇
  1991年   57篇
  1990年   72篇
  1989年   58篇
  1988年   63篇
  1987年   48篇
  1986年   49篇
  1985年   39篇
  1984年   46篇
  1983年   36篇
  1982年   23篇
  1981年   26篇
  1980年   18篇
  1979年   7篇
  1978年   15篇
  1977年   10篇
  1976年   7篇
  1975年   7篇
  1974年   4篇
排序方式: 共有3061条查询结果,搜索用时 15 毫秒
11.
Uptake rate of calcium, potassium, nitrate-N and phosphorus were measured in a second order Mediterranean temporary stream, in February and March 1992. This study analyzed a period of continuous surface flow between two hydrologic disturbance events (flood and drought) of an annual hydrological cycle (1991–92).The lowest values of uptake length were recorded for nitrate-N in February 92 and calcium in March 92. Nitrate had the highest uptake rate in both release performances, and potassium showed the lowest uptake rate values. The increase of calcium and nitrate uptake rate between February 92 and March 92 suggested a higher ecosystem efficiency in nutrient retention with a higher temperature and light intensity and slower water velocity, discharge and water depth. These results obtained were similar to those reported in permanent streams, indicating that in periods of continuous surface flow (without extreme hydrologic disturbance), abiotic factors can influence nutrient retention in temporary streams.  相似文献   
12.
13.
The role of ethylene in the formation of lysigenous cortical cavities (aerenchyma) in seedling roots of Zea mays L. cv. Capella, has been studied under aerated and non-aerated conditions. Passing roots from air to aerated water or from an aerated nutrient solution to a non-aerated solution, promoted cavity formation and was accompanied by an increase of the endogenous ethylene concentration. When the endogenous ethylene concentration of roots in aerated nutrient solutions, which otherwise would not produce much cavities, was enhanced by applying ethylene gas (0.1 and 1.0 μl 1-1 in air) or the ethylene precursor 1-aminocyclopropane-1-car-boxylic acid, cavity formation was promoted. When, on the contrary, the endogenous ethylene concentration of the roots was reduced by adding the inhibitors of ethylene biosynthesis, cobalt ions and aminooxyacetic acid, or when the ethylene action was prevented by silver ions, cavity formation was prevented. It is concluded that endogenous ethylene controls the induction of cavity formation in the roots.  相似文献   
14.
Summary Manganese, N and P fertilizers were applied to wheat in field experiments on a soil so deficient in Mn that it caused the wheat to die before heading. Yields of wheat were increased linearly by soil banded Mn to 44.8 kg/ha, giving a yield of 3.03 tonnes/ha. Yields were increased to a lesser extent by foliar-applied Mn and least by soil-broadcasted Mn. Soil N and P appeared to be adequate, yet ammonium sulphate at 56 kg N/ha where applied alone caused a yield of 1.69 tonnes/ha and ammonium sulphate nitrate gave a yield of 0.98 tonnes/ha, the increases being primarily due to the release of Mn to the plants. Calcium nitrate and triple superphosphate were much less effective in releasing Mn.  相似文献   
15.
16.
I. G. Burns 《Plant and Soil》1992,142(2):221-233
A method is described for determining the way in which growth rate varies with plant nutrient concentration using a simple nutrient interruption technique incorporating only 2 treatments. The method involves measuring the changes in growth and nutrient composition of otherwise well-nourished plants after the supply of one particular nutrient has been withheld. Critical concentrations are estimated from the relationship between the growth rate (expressed as a fraction of that for control plants of the same size which remained well-nourished throughout) and the concentration of the growth-limiting nutrient in the plants as deficiency developed. Trials of the method using young lettuce plants showed that shoot growth rate was directly proportional to total N (nitrate plus organic N) concentration, and linearly or near-linearly related to K and P concentration over a wide range; the corresponding relationship for nitrate was strongly curvi-linear. Critical concentrations (corresponding to a 10% reduction in growth rate) determined from these results were similar to critical values calculated from models derived from field data, but were generally higher than published estimates of critical concentration (based on reductions in shoot weight) for plants of a similar size. Reasons for these discrepancies are discussed. Nitrate, phosphate or potassium concentrations in sap from individual leaf petioles were highly sensitive to changes in shoot growth rate as deficiency developed, with the slope of the relationships varying with leaf position, due to differences both in their initial concentration and in the rates at which they were utilized in individual leaves. Each nutrient was always depleted more quickly in younger leaves than in older ones, providing earlier evidence of deficiency for diagnostic purposes. Although the plants were capable of accumulating nitrate, phosphate and potassium well in excess of that needed for optimum dry matter production during periods of adequate supply, the rate of mobilization of these reserves was insufficient to prevent reductions in growth rate as the plants became deficient. This brings into question the validity of the conventional concept that luxury consumption provides a store of nutrients which are freely available for use in times of shortage. The implications of these results for the use of plant analysis for assessing plant nutrient status are discussed.  相似文献   
17.
Summary The effects of sucrose concentration, addition of ammonium nitrate, and exposure to N6-benzyl-adenine (BA) on multiplication potential with shoots derived from shoot cultures of 17- to 20-yr-old Douglas fir trees [Pseudotsuga menziesii (Mirb.) Franco] were compared. Each of these conditions, when compared independently, affected recurrent shoot multiplication and influenced shoot development, as measured by the abundance of shoot apices. Sucrose concentration was influential, the use of 25 g · liter−1 providing twice the multiplication obtained with 20 g · liter−1, and 14 × that obtained with the 30 g · liter−1 concentration routinely used (tree 11). Ammonium nitrate usage also improved multiplication, a 2.5 times improvement being obtained after incorporation of 100 mg · liter−1 NH4NO3 into the medium (tree 33). Shoot cultures were responsive but relatively sensitive to addition of BA, the best improvement in multiplication (5 times) being obtained with brief exposures to 3 mg · liter−1 BA (tree 11). Although shoot cultures were responsive to the conditions investigated, differences in shoot multiplication and development were not displayed for several weeks. It was not possible therefore to repeat all the treatments with more than one genotype; however, when this was possible a genotype-dependent variation in response was evident.  相似文献   
18.
Fifteen nitrate assimilation-deficient mutants of the euryhaline green alga, Dunaliella tertiolecta Butcher were selected by their chlorate resistance. Ten mutants, unable to grow on NO3? but able to grow on NO2?, had no detectable nitrate reductase activity. Five mutants, unable to grow on either NO3? or NO2?, had depressed levels of both nitrate and nitrite reductase. A method for assaying methyl viologen-nitrate reductase in the presence of nitrite reductase is described.  相似文献   
19.
The NADH: nitrate reductase from durum wheat leaves was inactivated by cyanide and its activity restored by thiosulphate and beef kidney rhodanese. Rhodanese and thiosulphate, added to NADH-nitrate reductase before cyanide treatment protected NADH-nitrate reductase activity. No oxidizing agent was required for the protection or restoration of cyanide treated NADH-nitrate reductase.  相似文献   
20.
A membrane-bound (nitrate, chloride)-activated AT Pase was found in the neritie diatom, Skeletonema costatum (Grev.) Cleve. The enzyme is suggested to translocate NO3 across the plasmalemma, against a concentration gradient. The Km of the enzyme with respect to NO3 is ca. 0.9 × 10−6 M, and is in close agreement with the reported K8 for NO3 uptake by the whole cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号