首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5480篇
  免费   443篇
  国内免费   393篇
  2024年   12篇
  2023年   113篇
  2022年   133篇
  2021年   176篇
  2020年   130篇
  2019年   161篇
  2018年   158篇
  2017年   149篇
  2016年   152篇
  2015年   145篇
  2014年   297篇
  2013年   414篇
  2012年   245篇
  2011年   239篇
  2010年   151篇
  2009年   260篇
  2008年   289篇
  2007年   289篇
  2006年   269篇
  2005年   239篇
  2004年   176篇
  2003年   195篇
  2002年   152篇
  2001年   127篇
  2000年   129篇
  1999年   132篇
  1998年   115篇
  1997年   92篇
  1996年   116篇
  1995年   95篇
  1994年   79篇
  1993年   115篇
  1992年   88篇
  1991年   67篇
  1990年   64篇
  1989年   61篇
  1988年   48篇
  1987年   39篇
  1986年   41篇
  1985年   50篇
  1984年   51篇
  1983年   29篇
  1982年   41篇
  1981年   27篇
  1980年   38篇
  1979年   32篇
  1978年   29篇
  1977年   13篇
  1976年   12篇
  1973年   16篇
排序方式: 共有6316条查询结果,搜索用时 476 毫秒
91.
Abstract: Catecholamine (CA) secretion was evoked when the isolated rat adrenal gland was perfused with HEPES-buffered Krebs solution acidified by the addition of HCI or by gassing with 95% O2/5% CO2. The secretion was detectable at pH 7.0 and increased with decreasing pH until at ~6.4. The low pH-induced CA secretion consisted of two phases, an initial transient response followed by a sustained phase. An intracellular Ca2+ antagonist, 3,4,5-trimethoxybenzoic acid 8-(N,N-diethylamino)octyl ester, selectively inhibited the initial phase of secretion. Both of the responses were resistant to nifedipine, a blocker of voltage-gated Ca2+ channel, but were completely inhibited in Ca2+-free (1 mM EGTA containing) solution. Adrenaline was an exclusive component in CAs released by low pH. The time course and extent of intracellular acidification caused either by low pH in the external medium or by the offset of a transitory NH4CI application had no correlation with those of the secretory responses in the corresponding period. These results suggest that extracellular acidification preferentially activates adrenaline secretive cells to evoke CA secretion and that this low pH-induced CA secretion may be mediated by dihydropyridine-insensitive Ca2+ influx. Furthermore, the initial transient phase of the low pH-induced CA secretion might be caused by a Ca2+ release from intracellular stores, which is also induced by the Ca2+ influx.  相似文献   
92.
At elevated atmospheric CO2 concentrations ([CO2]a), photosynthetic capacity (Amax) and root fraction (ηR, the ratio of root to plant dry mass) increased in some studies and decreased in others. Here, we have explored possible causes of this, focusing on the relative magnitudes of the effects of elevated [CO2]a on specific leaf (nm) and plant (np) nitrogen concentrations, leaf mass per unit area (h), and plant nitrogen productivity (α). In our survey of 39 studies with 35 species, we found that elevated [CO2]a led to decreased nm and np in all the studies and to increased h and α in most of the studies. The magnitudes of these changes varied with species and with experimental conditions. Based on a model that integrated [CO2]a-induced changes in leaf nitrogen into a biochemically based model of leaf photosynthesis, we predicted that, to a first approximation, photosynthesis will be upregulated (Amax will increase) when growth at increased [CO2]a leads to increases in h that are larger than decreases in nm. Photosynthesis will be downregulated (Amax will decrease) when increases in h are smaller than decreases in nm. The model suggests that photosynthetic capacity increases at elevated [CO2]a only when additional leaf mesophyll more than compensates the effects of nitrogen dilution. We considered two kinds of regulatory paradigms that could lead to varying responses of ηR to elevated [CO2]a, and compared the predictions of each with the data. A simple static model based on the functional balance concept predicts that ηR should increase when neither np nor h is very responsive to elevated [CO2]a. The quantitative and qualitative agreement of the predictions with data from the literature, however, is poor. A model that predicts ηR from the relative sensitivities of photosynthesis and relative growth rate to elevated [CO2]a corresponds much more closely to the observations. In general, root fraction increases if the response of photosynthesis to [CO2]a is greater than that of relative growth rate.  相似文献   
93.
We examined serum copper (Cu), serum zinc (Zn), and the serum copper/zinc ratio (Cu/Zn) in 162 patients. All of them were seen to have an abnormal shadow in the chest X-ray films, that is, 109 patients with lung cancer (LC) and 53 patients with no lung cancer (NLC). The mean Cu and Cu/Zn in LC patients were significantly higher than those in NLC patients (p<0.05). In LC patients, Cu and Cu/Zn were higher and Zn was lower in advanced tumors than early ones. There was a significantly clear relation between Cu or Cu/Zn and the tumor (T) stages. When the relative risk (RR) of LC was estimated, it was seen that the higher Cu and Cu/Zn became, the higher RR became. Furthermore, we showed the sensitivity of the receiver operator characteristic of the test (ROC) curve for Cu, Cu/Zn, and carcinoembryonic antigen (CEA) to diagnose LC, as explained in a paragraph of methods.The determinations of Cu, Zn, and Cu/Zn are simple and inexpensive. They also appear to have a great diagnostic value in determining the local invasion of LC and as a screening test in the high-risk patients for LC.  相似文献   
94.
Abstract Cell volume, carbon and nitrogen content were determined for bacteria grown in batch cultures in water samples collected at five localities in western Florida, USA. Cultures were set up by inoculating 0.2 μm filtered water with 2.5 to 7.0% of 1.0 μm filtered water. Biovolumes of the bacteria were measured by epifluorescence photomicrography. Bacterial carbon and nitrogen contents were determined with a CHN analyser. During incubations, bacterial volumes doubled from 0.070±0.037 μ m3(mean ± S.E.) to 0.153 ± 0.036 μ m3 at early stationary phase. Bacterial C:N ratios ranged between 2.8 and 10.3, with a mean of 6.5, and were inversely correlated with cell volumes. Conversion factors for volume to carbon and nitrogen content were relatively high and variable, ranging from 0.21 to 161 pg C μm−3 (mean: 0.72 pg C μm−3) and from 0.05 to 0.25 pg N μm−3 (mean: 0.12 pg N μm−3). Small cells contained more C and N per unit volume than did large cells. The data suggested that biovolume to biomass conversion factors may be higher than previously thought and may be highly variable both temporally and geographically.  相似文献   
95.
The stable isotopes 2H and 18O were used to determine the water sources of Eucalyptus camaldulensis at three sites with varying exposure to stream water, all underlain by moderately saline groundwater. Water uptake patterns were a function of the long-term availability of surface water. Trees with permanent access to a stream used some stream water at all times. However, water from soils or the water table commonly made up 50% of these trees' water. Trees beside an ephemeral stream had access to the stream 40–50% of the time (depending on the level of the stream). No more than 30% of the water they used was stream water when it was available. However, stream water use did not vary greatly whether the trees had access to the stream for 2 weeks or 10 months prior to sampling. Trees at the third site only had access to surface water during a flood. These trees did not change their uptake patterns during 2 months inundation compared with dry times, so were not utilising the low-salinity flood water. Pre-dawn leaf water potentials and leaf 13C measurements showed that the trees with permanent access to the stream experienced lower water stress and had lower water use efficiencies than trees at the least frequently flooded site. The trees beside the ephemeral stream appeared to change their water use efficiency in response to the availability of surface water; it was similar to the perennial-stream trees when stream water was available and higher at other times. Despite causing water stress, uptake of soil water and groundwater would be advantageous to E. camaldulensis in this semi-arid area, as it would provide the trees with a supply of nutrients and a reliable source of water. E. camaldulensis at the study site may not be as vulnerable to changes in stream flow and water quality as previously thought.  相似文献   
96.
A growth analysis was made of ultraviolet-B (UV-B)-sensitive (Poinsett) and insensitive (Ashley) cultivars of Cucuumis satives L. grown in growth chambers at 600 μmol m−2 s−1 of photosynthetic photon flux (PPF) provided by red- and far-red-deficient metal halide (MH) or blue- and UV-A-deficient high pressure sodium/deluxe f HPS/DX) lamps. Plants were irradiated 6 h daiiy with 0.2 f-UV-B) or 18.2 C+UV-B) kJ m−2 day−1 of biologically effective UV-B for 8 or 15 days from time of seeding. In general, plants given supplemental UV-B for 15 days showed lower leaf area ratio (LARs, and higher specific leaf mass (SLM) mean relative growth rate (MRGR) and net assimilation rate (NAR) than that of control plants, but they showed no difference in leaf mass ratio (LMR), Plants grown under HPS/DX lamps vs MH lamps showed higher SLM and NAR. lower LAR and LMR. hut no difference in MRGR. LMR was the only growth parameter affected by cultivar: at 15 days, it was slightly greater in Poinsett than in Ashley. There were no interactive effects of UV-B. PPF source or cultivar on any of the growth parameters determined, indicating that the choice of either HPS/DX or MH lamps should not affect growth response to UV-B radiation. This was true even though leaves of UV-B-irradiated plants grown under HPS/DX lamps have been shown to have greater chlorosis than those grown under MH lamps.  相似文献   
97.
98.
Mizuno  N.  Yoshida  H. 《Plant and Soil》1993,155(1):505-508
The severity of the incidence of the fungal disease, potato scab, varies with different soil groups at the same soil pH. At a soil pH of 5.3, potato scab is easily controlled in soils of western Hokkaido (soil group A) by simply decreasing soil pH, but in soils from eastern Hokkaido (soil group B) it is not so easily controlled. The difference appears to be due to higher levels and exchangeable aluminium in Group A.Addition of sufficient aluminium or ferrous sulfate to a group B soil decreased the incidence of potato scab in a field experiment. Higher levels of aluminium sulfate depressed crop production. It is concluded that aluminium ions control the incidence of potato scab in acid soils. It is suggested that, in soils with low exchange acidity Y1, potato scab can be controlled by adding sufficient aluminium to increase their exchange acidity Y1 to above 7–8.  相似文献   
99.
Paired sera and CSF samples were collected from SIVmac-infected macaques. Animals infected with SIVmac251 maintained low gag and high env-specific antibody levels in plasma. Increasing env-specific antibody titers in CSF were associated in one animal with strong intrathecal synthesis. SIVmac239-infected monkeys revealed high antibody titers of gag and env-specificity, in one animal accompanied by weak intrathecal synthesis of virus-specific antibodies. In all animals, the CD4/CD8 ratio in CSF decreased faster compared to blood.  相似文献   
100.
Small birch plants were grown for up to 80 d in a climate chamber at varied relative addition rates of nitrogen in culture solution, and at ambient (350 μmol mol-1) or elevated (700 μmol mol-1) concentrations of CO2. The relative addition rate of nitrogen controlled relative growth rate accurately and independently of CO2 concentration at sub-optimum levels. During free access to nutrients, relative growth rate was higher at elevated CO2. Higher values of relative growth rate and net assimilation rate were associated with higher values of plant N-concentration. At all N-supply rates, elevated CO2 resulted in higher values of net assimilation rate, whereas leaf weight ratio was independent of CO2. Specific leaf area (and leaf area ratio) was less at higher CO2 and at lower rates of N-supply. Lower values of specific leaf area were partly because of starch accumulation. Nitrogen productivity (growth rate per unit plant nitrogen) was higher at elevated CO2. At sub-optimal N-supply, the higher net assimilation rate at elevated CO2 was offset by a lower leaf area ratio. Carbon dioxide did not affect root/shoot ratio, but a higher fraction of plant dry weight was found in roots at lower N-supply. In the treatment with lowest N-supply, five times as much root length was produced per amount of plant nitrogen in comparison with optimum plants. The specific fine root length at all N-supplies was greater at elevated CO2. These responses of the root system to lower N-supply and elevated CO2 may have a considerable bearing on the acquisition of nutrients in depleted soils at elevated CO2. The advantage of maintaining steady-state nutrition in small plants while investigating the effects of elevated CO2 on growth is emphasized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号