首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   29篇
  国内免费   25篇
  2023年   12篇
  2022年   21篇
  2021年   12篇
  2020年   21篇
  2019年   9篇
  2018年   14篇
  2017年   12篇
  2016年   17篇
  2015年   11篇
  2014年   24篇
  2013年   50篇
  2012年   12篇
  2011年   30篇
  2010年   14篇
  2009年   28篇
  2008年   29篇
  2007年   25篇
  2006年   33篇
  2005年   25篇
  2004年   23篇
  2003年   28篇
  2002年   26篇
  2001年   13篇
  2000年   14篇
  1999年   13篇
  1998年   15篇
  1997年   9篇
  1996年   13篇
  1995年   8篇
  1994年   14篇
  1993年   7篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   10篇
  1984年   21篇
  1983年   9篇
  1982年   21篇
  1981年   12篇
  1980年   6篇
  1979年   11篇
  1978年   1篇
  1976年   3篇
  1974年   1篇
排序方式: 共有704条查询结果,搜索用时 62 毫秒
21.
The phosphodiesterase-4 (PDE4) enzyme is a promising therapeutic target for several diseases. Our previous studies found resveratrol and moracin M to be natural PDE4 inhibitors. In the present study, three natural resveratrol analogs [pterostilbene, (E)-2′,3,5′,5-tetrahydroxystilbene (THSB), and oxyresveratrol] are structurally related to resveratrol and moracin M, but their inhibition and mechanism against PDE4 are still unclear. A combined method consisting of molecular docking, molecular dynamics (MD) simulations, binding free energy, and bioassay was performed to better understand their inhibitory mechanism. The binding pattern of pterostilbene demonstrates that it involves hydrophobic/aromatic interactions with Phe340 and Phe372, and forms hydrogen bond(s) with His160 and Gln369 in the active site pocket. The present work also reveals that oxyresveratrol and THSB can bind to PDE4D and exhibits less negative predicted binding free energies than pterostilbene, which was qualitatively validated by bioassay (IC50 = 96.6, 36.1, and 27.0 μM, respectively). Additionally, a linear correlation (R2 = 0.953) is achieved for five PDE4D/ligand complexes between the predicted binding free energies and the experimental counterparts approximately estimated from their IC50 values (≈RT ln IC50). Our results imply that hydrophobic/aromatic forces are the primary factors in explaining the mechanism of inhibition by the three products. Results of the study help to understand the inhibitory mechanism of the three natural products, and thus help the discovery of novel PDE4 inhibitors from resveratrol, moracin M, and other natural products.  相似文献   
22.
Various radioligands have been used to characterize and quantify the platelet P2Y12 receptor, which share several weaknesses: (a) they are metabolically unstable and substrates for ectoenzymes, (b) they are agonists, and (c) they do not discriminate between P2Y1 and P2Y12. We used the [3H]PSB-0413 selective P2Y12 receptor antagonist radioligand to reevaluate the number of P2Y12 receptors in intact platelets and in membrane preparations. Studies in humans showed that: (1) [3H]PSB-0413 bound to 425 ± 50 sites/platelet (KD = 3.3 ± 0.6 nM), (2) 0.5 ± 0.2 pmol [3H]PSB-0413 bound to 1 mg protein of platelet membranes (KD = 6.5 ± 3.6 nM), and (3) competition studies confirmed the known features of P2Y12, with the expected rank order of potency: AR-C69931MX > 2MeSADP ≫ ADPβS > ADP, while the P2Y1 ligand MRS2179 and the P2X1 ligand α,β-Met-ATP did not displace [3H]PSB-0413 binding. Patients with severe P2Y12 deficiency displayed virtually no binding of [3H]PSB-0413 to intact platelets, while a patient with a dysfunctional P2Y12 receptor had normal binding. Studies in mice showed that: (1) [3H]PSB-0413 bound to 634 ± 87 sites/platelet (KD = 14 ± 4.5 nM) and (2) 0.7 pmol ± 0.3 [3H]PSB-0413 bound to 1 mg protein of platelet membranes (KD = 9.1 ± 5.3 nM). Clopidogrel and other thiol reagents like pCMBS or DTT abolished the binding both to intact platelets and membrane preparations. Therefore, [3H]PSB-0413 is an accurate and selective tool for radioligand binding studies aimed at quantifying P2Y12 receptors, to identify patients with P2Y12 deficiencies or quantify the effect of P2Y12 targeting drugs.  相似文献   
23.
Compelling data supports the hypothesis that Pin1 inhibitors will be useful for the therapy of cancer: Pin1 deficient mice resist the induction of breast cancers normally evoked by expression of MMTV-driven Ras or Erb2 alleles. While Pin1 poses challenges for drug discovery, several groups have identified potent antagonists by structure based drug design, significant progress has been made designing peptidic inhibitors and a number of natural products have been found that blockade Pin1, notably epigallocatchechin gallate (EGCG), a major flavonoid in green tea. Here we critically discuss the modes of action and likely specificity of these compounds, concluding that a suitable chemical biology tool for probing the function of Pin1 has yet to be found. We conclude by outlining some open questions regarding the target validation of Pin1 and the prospects for identification of improved inhibitors in the future.  相似文献   
24.
Bacteria often possess multiple siderophore-based iron uptake systems for scavenging this vital resource from their environment. However, some siderophores seem redundant, because they have limited iron-binding efficiency and are seldom expressed under iron limitation. Here, we investigate the conundrum of why selection does not eliminate this apparent redundancy. We focus on Pseudomonas aeruginosa, a bacterium that can produce two siderophores—the highly efficient but metabolically expensive pyoverdine, and the inefficient but metabolically cheap pyochelin. We found that the bacteria possess molecular mechanisms to phenotypically switch from mainly producing pyoverdine under severe iron limitation to mainly producing pyochelin when iron is only moderately limited. We further show that strains exclusively producing pyochelin grew significantly better than strains exclusively producing pyoverdine under moderate iron limitation, whereas the inverse was seen under severe iron limitation. This suggests that pyochelin is not redundant, but that switching between siderophore strategies might be beneficial to trade off efficiencies versus costs of siderophores. Indeed, simulations parameterized from our data confirmed that strains retaining the capacity to switch between siderophores significantly outcompeted strains defective for one or the other siderophore under fluctuating iron availabilities. Finally, we discuss how siderophore switching can be viewed as a form of collective decision-making, whereby a coordinated shift in behaviour at the group level emerges as a result of positive and negative feedback loops operating among individuals at the local scale.  相似文献   
25.
Glucagon-like peptide-1 (GLP-1), an incretin secreted by intestinal L-cells, can effectively lower blood glucose levels in patients with diabetes. A fusion gene, consisting of 10 tandem repeated GLP-1 analog genes, was expressed at a high level in the yeast Pichia pastoris. SDS polyacrylamide gel electrophoresis (SDS–PAGE), and Western Blotting results showed that fusion protein migrated as a single protein band with a molecular weight of 36 kDa. A biological activity test showed that the GLP-1 analog could significantly lower the level of serum glucose when GLP-1 purified analog was injected into diabetic rats. A potential strategy for large-scale production of fusion protein containing the 10 GLP-1 analogs as discovered, and a single GLP-1 analog was obtained from fusion protein digested with trypsin. This should be inspired foreign expression of medicinal short peptides and be valuable in further research on GLP-1 analog drugs in the treatment of diabetes mellitus.  相似文献   
26.
Biosynthesis of complex natural products like polyketides and nonribosomal peptides using Escherichia coli as a heterologous host provides an opportunity to access these molecules. The value in doing so stems from the fact that many compounds hold some therapeutic or other beneficial property and their original production hosts are intractable for a variety of reasons. In this work, metabolic engineering and induction variable optimization were used to increase production of the polyketide‐nonribosomal peptide compound yersiniabactin, a siderophore that has been utilized to selectively remove metals from various solid and aqueous samples. Specifically, several precursor substrate support pathways were altered through gene expression and exogenous supplementation in order to boost production of the final compound. The gene expression induction process was also analyzed to identify the temperatures and inducer concentrations resulting in highest final production levels. When combined, yersiniabactin production was extended to ~175 mg L?1. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1412–1417, 2016  相似文献   
27.
Peach tree short life (PTSL) is a devastating disease syndrome of peach [Prunus persica (L.) Batsch] caused by multiple factors; the molecular biology of its tolerance/susceptibility is unknown. The difficulty of studying PTSL is that tree survival or death is not obvious until 3 to 5 years after planting when the symptoms of PTSL first appear. Tolerance to PTSL was unknown in Prunus until the rootstock Guardian® ‘BY520-9’ was introduced into commercial orchards in 1994. To study the genetics of the response to PTSL, a controlled F2 cross was made between Guardian® ‘BY520-9’ selection 3-17-7 (PTSL-tolerant) and Nemaguard (PTSL-susceptible). An F1 hybrid was then selfed to generate an F2 population expected to segregate for PTSL response. One hundred fifty-one AFLPs and 21 SSRs, including anchor loci from the Prunus reference genetic map, were used to construct a molecular genetic map based on 100 F2 seedlings. This map covers a genetic distance of 737 cM with an average marker spacing of 4.7 cM and will be used as a framework to construct a highly saturated molecular genetic map. Of the 140 mapped AFLP markers, 38 were associated with PTSL response, as identified previously by bulked segregant analysis. The distribution of the markers associated with PTSL response on the newly constructed genetic map was compared with the recently published Prunus resistance map. This comparison revealed that some resistance gene analogs and several PTSL-associated AFLP markers were located in the same regions in several Prunus linkage groups: G1, G2, G4, G5, and G6. This peach rootstock map can also be viewed and compared with other Prunus maps in comparative map viewer CMap in the Genome Database for Rosaceae (GDR) at http://www.rosaceae.org  相似文献   
28.
We report the chemical synthesis of Fuc(12)Gal-O(CH2)7CH3 (1) an analog of the natural blood group (O)H disaccharide Fuc(12)Gal-OR. Compound 1 was a good substrate for recombinant blood group B glycosyltransferase (GTB) and was used as a precursor for the enzymatic synthesis of the blood group B analog Gal(3)[Fuc(12)]Gal-O(CH2)7CH3 (2). To probe the mechanism of the GTB reaction, kinetic evaluations were carried out employing compound 1 or the natural acceptor disaccharide Fuc(12)Gal-O(CH2)7CH3 (3) with UDP-Gal and UDP-GalNAc donors. Comparisons of the kinetic constants for alternative donor and acceptor pairs suggest that the GTB mechanism is Theorell-Chance where donor binding precedes acceptor binding. GTB operates with retention of configuration at the anomeric center of the donor. Retaining reactions are thought to occur via a double-displacement mechanism with formation of a glycosyl-enzyme intermediate consistent with the proposed Theorell-Chance mechanism.  相似文献   
29.
The purpose of this study was to clarify the mechanism of the blood-brain barrier (BBB) transport of H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA), which is a novel dermorphin analog with high affinity for the micro 1-opioid receptor. The in vivo BBB permeation influx rate of [125I]TAPA after an i.v. bolus injection (7.3 pmol/g body weight) into mice was estimated to be 0.265 +/- 0.025 microL/(min.g of brain). The influx rate of [125I]TAPA was reduced 70% by the coadministration of unlabeled TAPA (33 nmol/g of brain), suggesting the existence of a specific transport system for TAPA at the BBB. In order to elucidate the BBB transport mechanism of TAPA, a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4) was used as an in vitro model of the BBB. The acid-resistant binding of [125I]TAPA, which represents the internalization of the peptide into cells, was temperature- and concentration-dependent with a half-saturation constant of 10.0 +/- 1.7 microm. The acid-resistant binding of TAPA was significantly inhibited by 2,4-dinitrophenol, dansylcadaverine (an endocytosis inhibitor) and poly-l-lysine and protamine (polycations). These results suggest that TAPA is transported through the BBB by adsorptive-mediated endocytosis, which is triggered by binding of the peptide to negatively charged sites on the surface of brain capillary endothelial cells. Blood-brain barrier transport via adsorptive-mediated endocytosis plays a key role in the expression of the potent opioid activity of TAPA in the CNS.  相似文献   
30.
Secondary and tertiary structures of human blood alpha(1)-acid glycoprotein, a member of the lipocalin family, have been studied for the first time by infrared and Raman spectroscopies. Vibrational spectroscopy confirmed details of the secondary structure and the structure content predicted by homology modeling of the protein moiety, i.e., 15% alpha-helices, 41% beta-sheets, 12% beta-turns, 8% bands, and 24% unordered structure at pH 7.4. Our model shows that the protein folds as a highly symmetrical all-beta protein dominated by a single eight-stranded antiparallel beta-sheet. Thermal dynamics in the range 20-70 degrees C followed by Raman spectroscopy and analyzed by principle component analysis revealed full reversibility of the protein motion upon heating dominated by decreasing of beta-sheets. Raman difference spectroscopy confirmed the proximity of Trp(122) to progesterone binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号