首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   37篇
  国内免费   9篇
  446篇
  2024年   2篇
  2023年   19篇
  2022年   30篇
  2021年   25篇
  2020年   25篇
  2019年   38篇
  2018年   35篇
  2017年   28篇
  2016年   35篇
  2015年   21篇
  2014年   25篇
  2013年   25篇
  2012年   26篇
  2011年   16篇
  2010年   20篇
  2009年   13篇
  2008年   13篇
  2007年   12篇
  2006年   8篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1984年   1篇
  1982年   2篇
排序方式: 共有446条查询结果,搜索用时 15 毫秒
51.
Hierarchical shotgun sequencing remains the method of choice for assembling high‐quality reference sequences of complex plant genomes. The efficient exploitation of current high‐throughput technologies and powerful computational facilities for large‐insert clone sequencing necessitates the sequencing and assembly of a large number of clones in parallel. We developed a multiplexed pipeline for shotgun sequencing and assembling individual bacterial artificial chromosomes (BACs) using the Illumina sequencing platform. We illustrate our approach by sequencing 668 barley BACs (Hordeum vulgare L.) in a single Illumina HiSeq 2000 lane. Using a newly designed parallelized computational pipeline, we obtained sequence assemblies of individual BACs that consist, on average, of eight sequence scaffolds and represent >98% of the genomic inserts. Our BAC assemblies are clearly superior to a whole‐genome shotgun assembly regarding contiguity, completeness and the representation of the gene space. Our methods may be employed to rapidly obtain high‐quality assemblies of a large number of clones to assemble map‐based reference sequences of plant and animal species with complex genomes by sequencing along a minimum tiling path.  相似文献   
52.
In plant species with large genomes such as wheat or barley, genome organization at the level of DNA sequence is largely unknown. The largest sequences that are publicly accessible so far from Triticeae genomes are two 60 kb and 66 kb intervals from barley. Here, we report on the analysis of a 211 kb contiguous DNA sequence from diploid wheat (Triticum monococcum L.). Five putative genes were identified, two of which show similarity to disease resistance genes. Three of the five genes are clustered in a 31 kb gene-enriched island while the two others are separated from the cluster and from each other by large stretches of repetitive DNA. About 70% of the contig is comprised of several classes of transposable elements. Ten different types of retrotransposons were identified, most of them forming a pattern of nested insertions similar to those found in maize and barley. Evidence was found for major deletion, insertion and duplication events within the analysed region, suggesting multiple mechanisms of genome evolution in addition to retrotransposon amplification. Seven types of foldback transposons, an element class previously not described for wheat genomes, were characterized. One such element was found to be closely associated with genes in several Triticeae species and may therefore be of use for the identification of gene-rich regions in these species.  相似文献   
53.
Giardia duodenalis is a protozoan parasite of the small intestine in vertebrates, including humans. Assemblage A of G. duodenalis is one of the two discrete subtypes that infects humans, and is considered a zoonotic assemblage. Two G. duodenalis Assemblage A strains BRIS/95/HEPU/2041 and BRIS/83/HEPU/106, constituting virulent and control strains respectively, were analyzed in one of the first comparative shotgun proteomic studies performed in this parasite. Protein extracts were prepared using a multiplatform approach with both an in‐gel and in‐solution sample preparation to enable us to assess the complementarity for future Giardia proteomic studies. Protein analysis revealed that BRIS/95/HEPU/2041 possessed a wider and more varied repertoire of variant surface proteins (VSPs), which are hypothesized to be involved in host adaptation, immune evasion, and virulence. A total of 35 VSPs were identified, with three common to both strains, six unique to BRIS/82/HEPU/106, and twenty‐six unique to BRIS/95/HEPU/2041. Additionally, up to 25.6% of all differentially expressed proteins in BRIS/95/HEPU/2041 belonged to the VSP family, a trend not seen in the control BRIS/83/HEPU/106. Greater antigen variation in BRIS/95/HEPU/2041 may explain aspects of virulence phenotypes in G. duodenalis, with a highly diverse population capable of evading host immune responses.  相似文献   
54.
Target of Rapamycin (TOR) is a positive regulator of growth and development in all eukaryotes, which positively regulates anabolic processes like protein synthesis, while repressing catabolic processes, including autophagy. To better understand TOR function we decided to analyze its role in seed development and germination. We therefore performed a detailed phenotypic analysis using mutants of the REGULATORYASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), a conserved TOR interactor, acting as a scaffold protein, which recruits substrates for the TOR kinase. Our results show that raptor1b plants produced seeds that were delayed in germination and less resistant to stresses, leading to decreased viability. These physiological phenotypes were accompanied by morphological changes including decreased seed‐coat pigmentation and reduced production of seed‐coat mucilage. A detailed molecular analysis revealed that many of these morphological changes were associated with significant changes of the metabolic content of raptor1b seeds, including elevated levels of free amino acids, as well as reduced levels of protective secondary metabolites and storage proteins. Most of these observed changes were accompanied by significantly altered phytohormone levels in the raptor1b seeds, with increases in abscisic acid, auxin and jasmonic acid, which are known to inhibit germination. Delayed germination and seedling growth, observed in the raptor1b seeds, could be partially restored by the exogenous supply of gibberellic acid, indicating that TOR is at the center of a regulatory hub controlling seed metabolism, maturation and germination.  相似文献   
55.
Oncoproteomics is an important innovation in the early diagnosis, management and development of personalized treatment of acute lymphoblastic leukaemia (ALL). As inherent factors are not completely known – e.g. age or family history, radiation exposure, benzene chemical exposure, certain viral exposures such as infection with the human T‐cell lymphoma/leukaemia virus‐1, as well as some inherited syndromes may raise the risk of ALL – each ALL patient may modify the susceptibility of therapy. Indeed, we consider these unknown inherent factors could be explained via coupling cytogenetics plus proteomics, especially when proteins are the ones which play function within cells. Innovative proteomics to ALL therapy may help to understand the mechanism of drug resistance and toxicities, which in turn will provide some leads to improve ALL management. Most important of these are shotgun proteomic strategies to unravel ALL aberrant signalling networks. Some shotgun proteomic innovations and bioinformatic tools for ALL therapies will be discussed. As network proteins are distinctive characteristics for ALL patients, unrevealed by cytogenetics, those network proteins are currently an important source of novel therapeutic targets that emerge from shotgun proteomics. Indeed, ALL evolution can be studied for each individual patient via oncoproteomics.  相似文献   
56.
57.
Exercise training influences phospholipid fatty acid composition in skeletal muscle and these changes are associated with physiological phenotypes; however, the molecular mechanism of this influence on compositional changes is poorly understood. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, the fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training induces these adaptations, together with increased PGC-1α, PGC-1α may contribute to the exercise-mediated change in phospholipid fatty acid composition. To determine the role of PGC-1α, we performed lipidomic analyses of skeletal muscle from genetically modified mice that overexpress PGC-1α in skeletal muscle or that carry KO alleles of PGC-1α. We found that PGC-1α affected lipid profiles in skeletal muscle and increased several phospholipid species in glycolytic muscle, namely phosphatidylcholine (PC) (18:0/22:6) and phosphatidylethanolamine (PE) (18:0/22:6). We also found that exercise training increased PC (18:0/22:6) and PE (18:0/22:6) in glycolytic muscle and that PGC-1α was required for these alterations. Because phospholipid fatty acid composition influences cell permeability and receptor stability at the cell membrane, these phospholipids may contribute to exercise training-mediated functional changes in the skeletal muscle.  相似文献   
58.
The genus Pachycladon consists of ten species of alpine plants, nine of which are endemic to New Zealand. The species are closely related to the model plant Arabidopsis thaliana with respect to their sequence divergence and chromosome synteny, occupy distinct geographical habitats in terms of both latitude and altitude, and display a range of morphologies. We have performed label‐free quantitative shotgun proteomic analysis of five different species of Pachycladon, namely P. cheesemanii (CH), P. exile (EX), P. fastigiatum (FA), P. enysii (EN) and P. novae‐zelandiae (NZ). The total non‐redundant data set for all five species contained 1489 proteins. The numbers of proteins identified reproducibly in each species ranged from 629 for CH to 987 for NZ, with 681 for EN, 741 for EX and 934 for FA. Previous metabolite‐based studies have shown that FA hydrolyzes glucosinolates completely to isothiocyanates while EN converts glucosinolates to nitriles. In this study, we observed high expression of ESP (At1g54040, epithiospecifying senescence regulator protein) and myrosinase 2 (At5g25980, glycosyl hydrolase family protein), which result in production of nitriles and epithionitriles, in EN and NZ, and we also observed higher expression of ESM1 (At3g14210, GDSL esterase/lipase), which mediates the formation of isothiocyanate, in FA.  相似文献   
59.
A novel approach is presented combining quantitative metabolite and protein data and multivariate statistics for the analysis of time-related regulatory effects of plant metabolism at a systems level. For the analysis of metabolites, gas chromatography coupled to a time-of-flight mass analyzer (GC-TOF-MS) was used. Proteins were identified and quantified using a novel procedure based on shotgun sequencing as described recently (Weckwerth etal., 2004b, Proteomics 4, 78–83). For comparison, leaves of Arabidopsis thaliana wild type plants and starchless mutant plants deficient in phosphoglucomutase activity (PGM) were sampled at intervals throughout the day/night cycle. Using principal and independent components analysis, each dataset (metabolites and proteins) displayed discrete characteristics. Compared to the analysis of only metabolites or only proteins, independent components analysis (ICA) of the integrated metabolite/protein dataset resulted in an improved ability to distinguish between WT and PGM plants (first independent component) and, in parallel, to see diurnal variations in both plants (second independent component). Interestingly, levels of photorespiratory intermediates such as glycerate and glycine best characterized phases of diurnal rhythm, and were not influenced by high sugar accumulation in PGM plants. In contrast to WT plants, PGM plants showed an inversely regulated cluster of N-rich amino acid metabolites and carbohydrates, indicating a shift in C/N partitioning. This observation corresponds to altered utilization of urea cycle intermediates in PGM plants suggesting enhanced protein degradation and carbon utilization due to growth inhibition. Among the proteins chloroplastidic GAPDH (At3g26650) was the best discriminator between WT and PGM plants in contrast to the cytosolic isoform (At1g13440) according to the primary effect of mutation located in the chloroplast. The described method is applicable to all kinds of biological systems and enables the unbiased identification of biomarkers embedded in correlative metabolite–protein networks.  相似文献   
60.
The development of a new mass spectrometric lipid profiling methodology permits the identification of cellular phosphatidylinositol monophosphate/phosphatidylinositol bisphosphate/phosphatidylinositol trisphosphate (PIP/PIP2/PIP3) species that includes the fatty acyl composition. Using electrospray ionization mass spectrometry, we were able to resolve and identify 28 PIP and PIP2 compounds as well as 8 PIP3 compounds from RAW 264.7 or primary murine macrophage cell extracts. Analysis of PIP profiles after agonist stimulation of cells revealed the generation of differential PIP3 species and permitted us to propose a novel means for regulation and specificity in signaling through PIP3. This is the first reported identification of intact, cellular PIP3 by mass spectral analysis. The ability to analyze the fatty acyl chain composition of signaling lipids initiates new venues for investigation of the processes by which specific polyphosphoinositide species mediate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号