首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1609篇
  免费   66篇
  国内免费   69篇
  2023年   8篇
  2022年   19篇
  2021年   21篇
  2020年   11篇
  2019年   24篇
  2018年   26篇
  2017年   28篇
  2016年   21篇
  2015年   34篇
  2014年   28篇
  2013年   61篇
  2012年   33篇
  2011年   44篇
  2010年   36篇
  2009年   51篇
  2008年   48篇
  2007年   72篇
  2006年   102篇
  2005年   79篇
  2004年   78篇
  2003年   77篇
  2002年   74篇
  2001年   62篇
  2000年   69篇
  1999年   65篇
  1998年   50篇
  1997年   43篇
  1996年   65篇
  1995年   37篇
  1994年   41篇
  1993年   58篇
  1992年   36篇
  1991年   31篇
  1990年   29篇
  1989年   31篇
  1988年   38篇
  1987年   19篇
  1986年   18篇
  1985年   21篇
  1984年   9篇
  1983年   11篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1972年   1篇
排序方式: 共有1744条查询结果,搜索用时 359 毫秒
61.
The distribution of NO3? reduction between roots and shoots was studied in hydro-ponically-grown peach-tree seedlings (Prunus persica L.) during recovery from N starvation. Uptake, translocation and reduction of NO3?, together with transport through xylem and phloem of the newly reduced N were estimated, using 15N labellings, in intact plants supplied for 90 h with 0.5 mM NH4+ and 0.5, 1.5 or 10 mM NO3?. Xylem transport of NO3? was further investigated by xylem sap analysis in a similar experiment. The roots were the main site of NO3? reduction at all 3 levels of NO3? nutrition. However, the contribution of the shoots to the whole plant NO3? reduction increased with increasing external NO3? availability. This contribution was estimated to be 20, 23 and 42% of the total assimilation at 0.5, 1.5 and 10 mM NO3?, respectively. Both 15N results and xylem sap analysis confirmed that this trend was due to an enhancement of NO3? translocation from roots to shoots. It is proposed that the lack of NO3? export to the shoots at low NO3? uptake rate resulted from a competition between NO3? reduction in the root epidermis/cortex and NO3? diffusion to the stele. On the other hand, net xylem transport of newly reduced N was very efficient since ca 70% of the amino acids synthesized in the roots were translocated to the shoots, regardless of the level of NO3? nutrition. This net xylem transport by far exceeded the net downward phloem transport of the reduced N assimilated in shoots. As a consequence, the reduced N resulting from NO3? assimilation, principally occurring in the roots, was mainly incorporated in the shoots.  相似文献   
62.
Horacio Paz 《Biotropica》2003,35(3):318-332
I analyzed patterns of variation in root mass allocation and root morphology among seedlings of woody species in relation to environmental factors in four Neotropical forests. Among forests, I explored the response of root traits to sites varying in water or nutrient availability. Within each forest, I explored the plastic response of species to different microhabitats: gaps and understory. Additionally, I explored evidence for life history correlation of root and shoot traits by comparing species differing in their successional group (light‐demanding [22 spp.] or shade tolerant [27 spp.]) and germination type (species with photosynthetic cotyledons or species with reserve cotyledons). At each forest site, young seedlings from 10 to 20 species were excavated. A total of 55 species was collected in understory conditions and 31 of them were also collected in gaps. From each seedling, six morphological ratios were determined. Allocation to roots was higher in forest sites with the lowest soil resources. Roots were finer and longer in the most infertile site, while roots were deeper in the site with the longest dry season. Seedling traits did not differ between germination types. Shade tolerant species allocated more to roots and developed thicker roots than light‐demanding species. Light‐demanding species showed stronger plastic responses to habitat than shade tolerant species, and species with photo‐synthetic cotyledons showed lower plasticity than species with reserve cotyledons. Overall, these results suggest that among Neotropical species, root allocation and root morphology of seedlings reflect plant adjustments to water or nutrient availability at geographic and microhabitat scales. In addition, life history specialization to light environments is suggested by differences among groups of species in their allocation to roots and in their root morphology.  相似文献   
63.
 In a pot trial growth and transpiration of 3-year-old Douglas-fir seedlings on an acid, sandy soil was examined at a deficient (30 kg N ha –  1 year –  1) and an excessive level (120 kg N ha –  1 year –  1) of NH4 application. Dissolved ammonium sulphate was applied to the pots weekly for two growing seasons. In half of the pots a complete set of other nutrients was applied in optimal proportions to the applied nitrogen. Water supply was optimal and transpiration was recorded. At the end of the second treatment season irrigation was stopped for 2 weeks during dry and sunny weather. Both high application of NH4 and additional nutrients increased shoot growth and transpiration demand in the first treatment year. The root system was smaller at higher N level and this reduced water uptake accordingly. In the second year the combination of high NH4 + and additional nutrients affected root functioning predominantly due to salinity effects and this seriously decreased water uptake capacity and shoot water potentials, finally resulting in tree death. Without addition of other nutrients the high NH4 + application resulted in a high degree of soil acidification, which damaged the roots, that showed a decrease in water uptake capacity. At the low NH4 supply level soil acidification was lower, and root functioning was not affected, and the trees recovered quickly from the imposed drought. Higher needle K and P status depressed transpiration rates at the low NH4 application rate. Received: 9 January 1995 / Accepted: 18 September 1995  相似文献   
64.
Summary The effects of nodal explants collected at different plastochrones, use of various benzyladenine (BA) concentrations, sources of carbohydrates, and phases of the culture medium on shoot establishment and proliferation ofRosa hybrida L. andR. chinensis minima were evaluated. Higher numbers of shoots per explant were obtained fromR. hybrida cv. Carefree Beauty explants proximal to the apical meristem than those from distal nodes. However, proliferating shoots derived from plastochrones proximal to the apical meristem had a lower number of leaves/explant and were shorter than those derived from other distal plastochrones. Although shoot proliferation increased with higher BA concentration in the medium, a concentration of 4.4 μM BA was found optimum for axillary bud-break and shoot development forR. hybrida cvs. Adelaide Hoodless and Cuthert Grant. A higher shoot proliferation rate was observed forR. hybrida cv. Carefree Beauty explants grown on a medium containing 55.5 mM fructose than 58.4 mM sucrose. However, no differences were observed forR. hybrida cv. Cuthert Grant grown on a medium containing either fructose or sucrose. The mean number of shoots/explant was higher forR. chinensis minima cv. Red Sunblaze explants grown on a liquid (4.5) than on a solid medium (1.7) for the first reculture; while no significant differences between the two phases of the medium were observed for the second reculture. However, a higher mean number of shoots/explant was observed on solid-phase (4.0) than liquid-phase medium (3.4) for the third reculture. A higher mean number of leaves/shoot was obtained on a solidified medium rather than liquid medium in the first two consecutive recultures, while no differences were observed for the third reculture. Although a significant effect of BA concentration on mean number of shoots/explant was observed for Red Sunblaze nodal explants, the influence of BA concentration decreased in the two consecutive cultures for both phases of the medium. Hyperhydricity was observed on Red Sunblaze shoots grown on the liquid-phase medium.  相似文献   
65.
66.
Growth and shoot: root ratio of seedlings in relation to nutrient availability   总被引:30,自引:2,他引:28  
Ericsson  Tom 《Plant and Soil》1995,168(1):205-214
The influence of mineral nutrient availability, light intensity and CO2 on growth and shoot:root ratio in young plants is reviewed. Special emphasis in this evaluation is given to data from laboratory experiments with small Betula pendula plants, in which the concept of steady-state nutrition has been applied.Three distinctly different dry matter allocation patterns were observed when growth was limited by the availability of mineral nutrients: 1, Root growth was favoured when N, P or S were the major growth constraints. 2, The opposite pattern obtained when K, Mg and Mn restricted growth. 3, Shortage of Ca, Fe and Zn had almost no effect on the shoot:root ratio. The light regime had no effect on dry matter allocation except at very low photon flux densities (< 6.5 mol m-2 day-1), in which a small decrease in the root fraction was observed. Shortage of CO2, on the other hand, strongly decreased root development, while an increase of the atmospheric CO2 concentration had no influence on dry matter partitioning. An increased allocation of dry matter to below-ground parts was associated with an increased amount of starch in the tissues. Depletion of the carbohydrate stores occurred under all conditions in which root development was inhibited. It is concluded that the internal balance between labile nitrogen and carbon in the root and the shoot system determines how dry matter is being partitioned in the plant. The consistency of this statement with literature data and existing models for shoot:root regulation is examined.  相似文献   
67.
Plant nutrition and growth: Basic principles   总被引:2,自引:0,他引:2  
Soil compaction may restrict shoot growth of sugar beet plants. Roots, however, are the plant organs directly exposed to soil compaction and should therefore be primarily affected. The aim of this study was to determine the influence of mechanical resistance and aeration of compacted soil on root and shoot growth and on phosphorus supply of sugar beet. For this purpose, a silt loam soil was adjusted to bulk densities of 1.30, 1.50 and 1.65 g cm–3 and water tensions of 300 and 60 hPa. Sugar beet was grown in a growth chamber under constant climatic conditions for 4 weeks. Both, decrease of water tension and increase of bulk density impeded root and shoot growth. In contrast, the P supply of the plants was differently affected. At the same air-filled pore volume, the P concentration of the shoots was reduced by a decrease of soil water tension, but not by an increase of bulk density. Both factors also reduced root length and root hair formation, however, in compacted soil the plants partly substituted for the reduction of root size by increasing the P uptake efficiency per unit of root. Shoot growth decreased when root growth was restricted. Both characteristics were closely related irrespective of the cause of root growth limitation by either compaction or water saturation. It is therefore concluded that shoot growth in both the compacted and the wet soil was regulated by root growth. The main factor impeding root growth in compacted soil was penetration resistance, not soil aeration.FAX no corresponding author: +49551 5056299  相似文献   
68.
A cDNA clone encoding Brassica calmodulin   总被引:2,自引:0,他引:2  
A 834 bp cDNA encoding calmodulin (CaM) has been isolated from Brassica juncea. On Northern analysis this cDNA hybridises this cDNA to mRNAs of about 0.9 kb in leaf, silique and peduncle. Genomic Southern analysis indicates the presence of a CaM multigene family in Brassica juncea. Comparison of the predicted amino acid sequence of Brassica CaM with that of Arabidopsis CaM ACaM-2 and ACaM-3 showed 100% homology, which is not unusual, since both plants belong to the family Cruciferae. In situ hybridisation studies on Brassica seedlings using a digoxigenin-labelled RNA probe showed that high levels of CaM mRNA were detected in the leaf primordia and the shoot apical meristem, and to a lesser degree, in the zone of root elongation of the root tip. The occurrence of a higher rate of cell division and growth in these regions than its surrounding tissue may possibly be related to higher levels of CaM mRNA.  相似文献   
69.
The NeIF-4A10 gene belongs to a family of at least ten genes, all of which encode closely related isoforms of translation initiation factor 4A. The promoter region of NeIF-4A10 was sequenced, and four mRNA 5 ends were determined. Deletions containing 2750, 689 and 188 bp of untranscribed upstream DNA were fused to the GUS reporter gene and introduced into transgenic tobacco. The three constructs mediated GUS expression in all cells of the leaf, stem and shoot apical meristem. Control experiments using in situ hybridization and tissue printing indicated that the observed GUS expression matches the expression patterns of NeIF-4A mRNA and protein. This detailed analysis at the level of mRNA, protein and reporter gene expression shows that NeIF-4A10 is an ideal constitutively expressed control gene. We argue that inclusion of such a control gene in experiments dealing with specifically expressed genes is in many cases essential for the correct interpretation of observed expression patterns.  相似文献   
70.
Picea omorika plants were regenerated from embryo and seedling shoot tip cultures. Adventitious and axillary shoots were produced on 1/2 MS medium containing benzyladenine and kinetin. Benzyladenine was more effective in bud induction, whereas kinetin hastened shoot development. Excised shoots were elongated on 1/3 MS medium without growth regulators, multiplied with kinetin and rooted with or without indole-3-butyric acid.Abbreviations BA N6-benzyladenine - 2IP N 6-(2-isopenteny) adenine - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号