首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   9篇
  国内免费   11篇
  2024年   2篇
  2023年   1篇
  2022年   11篇
  2021年   8篇
  2020年   6篇
  2019年   9篇
  2018年   16篇
  2017年   4篇
  2016年   28篇
  2015年   65篇
  2014年   51篇
  2013年   34篇
  2012年   20篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   11篇
  2007年   11篇
  2006年   8篇
  2005年   10篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1986年   1篇
  1981年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
91.
SVA is a composite repetitive element named after its main components, SINE, VNTR and Alu. We have identified 2762 SVA elements from the human genome draft sequence. Genomic distribution analysis indicates that the SVA elements are enriched in G+C-rich regions but have no preferences for inter- or intragenic regions. A phylogenetic analysis of the elements resulted in the recovery of six subfamilies that were named SVA_A to SVA_F. The composition, age and genomic distribution of the subfamilies have been examined. Subfamily age estimates based upon nucleotide divergence indicate that the expansion of four SVA subfamilies (SVA_A, SVA_B, SVA_C and SVA_D) began before the divergence of human, chimpanzee and gorilla, while subfamilies SVA_E and SVA_F are restricted to the human lineage. A survey of human genomic diversity associated with SVA_E and SVA_F subfamily members showed insertion polymorphism frequencies of 37.5% and 27.6%, respectively. In addition, we examined the amplification dynamics of SVA elements throughout the primate order and traced their origin back to the beginnings of hominid primate evolution, approximately 18 to 25 million years ago. This makes SVA elements the youngest family of retroposons in the primate order.  相似文献   
92.
Two polyurethanases PueA and PueB from Pseudomonas protegens Pf-5 have been reported to have hydrolytic activity against synthetic p-nitrophenyl palmitate of lipase substrate, and PueA may play a more effective role in this activity. However, it is still unknown whether PueA and PueB play similar parts in the lipase activity against natural acylglycerols and achieve the extracellular secretion via their cognate ABC exporter AprDEF. In this study, we investigated these questions through the construction of four markerless deletion mutants in Pf5139 (Δupp derivative of Pf-5), two heterologous co-expression strains and their three control strains in lipase-free Escherichia coli BL21(DE3), and detected their lipase activities by the tributyrin plate assay and the liquid culture assay. The results showed that PueA and PueB, classified as subfamily I.3 lipases, are major extracellular lipases involved in the uptake of oil in Pf-5, and PueA plays a leading role in extracellular lipase activity. In addition, the extracellular secretion of PueA and PueB can be partly mediated via AprDEF in Pf-5 and BL21(DE3). Finally, PueA and PueB are also able to achieve the extracellular secretion without the assistance of AprDEF in Pf-5 and BL21(DE3).  相似文献   
93.
94.
The flora of Western Europe is rich in endemic species of Apiaceae, many of which have been poorly investigated and whose phylogenetic relationships are poorly known. To investigate relationships among three endemic European genera (Dethawia, Meum, and Rivasmartinezia gen. nov.) and to ascertain their higher-level phylogenetic placements within the subfamily Apioideae, we examined nuclear ribosomal DNA ITS sequences and the plastid trnL-trnF region. Phylogenies estimated using parsimony and Bayesian inference reveal that (1) the historically known “Conioselinum chinense” Clade (Conioselinum chinense; C. scopulorum; Ligusticum canadense; L. porteri; Meum athamanticum; Mutellina purpurea; and Trochiscanthes nodiflora) comprise a strongly supported monophyletic group (100% BS); (2) the genera Dethawia and Meum comprise a strongly supported monophyletic group also included in the “Conioselinum chinense” Clade; and finally (3) a new genus (Rivasmartinezia) with one species (R. vazquezii) from the Northwestern of the Iberian Peninsula, and placed in the basal position in the “Conioselinum chinense” Clade, is described for the family Apiaceae subfamily Apioideae.  相似文献   
95.

Aims

Identification, cloning, expression and characterization of a novel lipase – Lip I.3 – from strain Pseudomonas CR‐611.

Methods and Results

The corresponding gene was identified and isolated by PCR‐amplification, cloned and expressed in Escherichia coli, and purified by refolding from inclusion bodies. Analysis of the deduced amino acid sequence revealed high homology with members of the bacterial lipase family I.3, showing 97% identity to a putative lipase from Pseudomonas fluorescens Pf0‐1, and 93% identity to a crystallized extracellular lipase from Pseudomonas sp. MIS38. A typical C‐terminal type I secretion signal and several putative Ca2+ binding sites were also identified. Experimental data confirmed that Lip I.3 requires Ca2+ ions for correct folding and activity. The enzyme differs from the previously reported family I.3 lipases in optimal pH, being the first acidophilic lipase reported in this family. Furthermore, Lip I.3 shows a strong preference for medium chain fatty acid esters and does not display interfacial activation. When tested for activity on secondary alcohol hydrolysis, Lip I.3 displayed higher efficiency on aromatic alcohols rather than on alkyl alcohols.

Conclusions

A new family I.3 lipase with unusual properties has been isolated, cloned and described. This will contribute to a better knowledge of family I.3 lipases, a family that has been scarcely explored, and that might provide a novel source of biocatalysts.

Significance and Impact of the Study

The unusual properties shown by Lip I.3 and the finding of activity and enantioselectivity on secondary alcohol esters may contribute to the development of new enzymatic tools for applied biocatalysis.  相似文献   
96.
STARD10, a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) protein family, is highly expressed in the liver and has been shown to transfer phosphatidylcholine. Therefore it has been assumed that STARD10 may function in the secretion of phospholipids into the bile. To help elucidate the physiological role of STARD10, we produced Stard10 knockout mice (Stard10−/−) and studied their phenotype. Neither liver content nor biliary secretion of phosphatidylcholine was altered in Stard10−/− mice. Unexpectedly, the biliary secretion of bile acids from the liver and the level of taurine-conjugated bile acids in the bile were significantly higher in Stard10−/− mice than wild type (WT) mice. In contrast, the levels of the secondary bile acids were lower in the liver of Stard10−/− mice, suggesting that the enterohepatic cycling is impaired. STARD10 was also expressed in the gallbladder and small intestine where the expression level of apical sodium dependent bile acid transporter (ASBT) turned out to be markedly lower in Stard10−/− mice than in WT mice when measured under fed condition. Consistent with the above results, the fecal excretion of bile acids was significantly increased in Stard10−/− mice. Interestingly, PPARα-dependent genes responsible for the regulation of bile acid metabolism were down-regulated in the liver of Stard10/ mice. The loss of STARD10 impaired the PPARα activity and the expression of a PPARα-target gene such as Cyp8b1 in mouse hepatoma cells. These results indicate that STARD10 is involved in regulating bile acid metabolism through the modulation of PPARα-mediated mechanism.  相似文献   
97.
The transient receptor potential subfamily A member 1 (TRPA1) is a non-selective cation channel implicated in the pathogenesis of several airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Most of the research on TRPA1 focuses on its expression and function in neuronal context; studies investigating non-neuronal expression of TRPA1 are lacking. In the present study, we show functional expression of TRPA1 in human lung fibroblast cells (CCD19-Lu) and human pulmonary alveolar epithelial cell line (A549). We demonstrate TRPA1 expression at both mRNA and protein levels in these cell types. TRPA1 selective agonists like allyl isothiocyanate (AITC), 4-hydroxynonenal (4-HNE), crotonaldehyde and zinc, induced a concentration-dependent increase in Ca+2 influx in CCD19-Lu and A549 cells. AITC-induced Ca+2 influx was inhibited by Ruthenium red (RR), a TRP channel pore blocker, and by GRC 17536, a TRPA1 specific antagonist. Furthermore, we also provide evidence that activation of the TRPA1 receptor by TRPA1 selective agonists promotes release of the chemokine IL-8 in CCD19-Lu and A549 cells. The IL-8 release in response to TRPA1 agonists was attenuated by TRPA1 selective antagonists. In conclusion, we demonstrate here for the first time that TRPA1 is functionally expressed in cultured human lung fibroblast cells (CCD19-Lu) and human alveolar epithelial cell line (A549) and may have a potential role in modulating release of this important chemokine in inflamed airways.  相似文献   
98.
《Palaeoworld》2021,30(4):737-745
This study reports the oldest fossil record of the genus Adina, A. vastanenesis n. sp., from the early Eocene of Vastan lignite mine (Cambay Shale Formation), Surat district, Gujarat. This fossil wood is characterized by diffuse porous wood, predominantly solitary tylosed vessels, simple perforations, scanty paratracheal to diffuse to sometimes diffuse in aggregate axial parenchyma, predominantly uniseriate to occasionally biseriate rays, and non septate fibres with bordered pits and shows its best resemblance with the modern species, Adina multifolia Haviland, belonging to the tribe Naucleeae (subfamily Cinchonoideae) of the family Rubiaceae. The present discovery becomes the first fossil record of the wood of Adina, which provides an insight about the Gondwanan origin either for the genus Adina or the tribe Naucleeae and its further dispersal to Southeast Asia.  相似文献   
99.
100.
Abstract Phylogenetic relationships of Pamphagidae were examined using cytochrome oxidase subunit II (COII) mtDNA sequences (684 bp). Twenty‐seven species of Acridoidea from 20 genera were sequenced to obtain mtDNA data, along with four species from the GenBank nucleotide database. The purpose of this study was analyzing the phylogenetic relationships among subfamilies within Pamphagidae and interpreting the phylogenetic position of this family within the Acridoidea superfamily. Phylogenetic trees were reconstructed using neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian inference (BI) methods. The 684 bp analyzed fragment included 126 parsimony informative sites. Sequences diverged 1.0%–11.1% between genera within subfamilies, and 8.8%–12.3% between subfamilies. Amino acid sequence diverged 0–6.1% between genera within subfamilies, and 0.4%–7.5% between subfamilies. Our phylogenetic trees revealed the monophyly of Pamphagidae and three distinct major groups within this family. Moreover, several well supported and stable clades were found in Pamphagidae. The global clustering results were similar to that obtained through classical morphological classification: Prionotropisinae, Thrinchinae and Pamphaginae were monophyletic groups. However, the current genus Filchnerella (Prionotropisinae) was not a monophyletic group and the genus Asiotmethis (Prionotropisinae) was a sister group of the genus Thrinchus (Thrinchinae). Further molecular and morphological studies are required to clarify the phylogenetic relationships of the genera Filchnerella and Asiotmethis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号