首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   26篇
  国内免费   3篇
  2023年   7篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   10篇
  2018年   8篇
  2017年   7篇
  2016年   7篇
  2015年   6篇
  2014年   17篇
  2013年   18篇
  2012年   4篇
  2011年   8篇
  2010年   11篇
  2009年   11篇
  2008年   11篇
  2007年   5篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1982年   2篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
71.
Two-phase partitioning bioreactors (TPPBs) can be used to biodegrade environmental contaminants after their extraction from soil. TPPBs are typically stirred tank bioreactors containing an aqueous phase hosting the degrading microorganism and an immiscible, non-toxic and non-bioavailable organic phase functioning as a reservoir for hydrophobic compounds. Biodegradation of these compounds in the aqueous phase results in thermodynamic disequilibrium and partitioning of additional compounds from the organic phase into the aqueous phase. This self-regulated process can allow the delivery of large amounts of hydrophobic substances to degrading microorganisms. This paper explores the reactor conditions under which the polychlorinated biphenyl (PCB) degrader Burkholderia xenovorans LB400 can degrade significant amounts of the PCB mixture Aroclor(R) 1242. Aroclor(R) degradation was found to stall after approximately 40 h if no carbon source other than PCBs was available in the reactor. Sodium pyruvate was found to be a suitable carbon source to maintain microbial activity against PCBs and to function as a substrate for additional cell growth. Both biphenyl (while required during the inoculum preparation) and glucose had a negative effect during the Aroclor(R) degradation phase. Initial Aroclor(R) 1242 degradation rates in the presence of pyruvate were high (6.2 mg L(-1) h(-1)) and 85% of an equivalent concentration of 100 mg Aroclor(R) 1242 per L aqueous phase could be degraded in 48 h, which suggest that solvent extraction of PCBs from soil followed by their biodegradation in TPPBs might be a feasible remediation option.  相似文献   
72.
Chu CY  Wu SY  Wu YC  Lin CY 《Bioresource technology》2011,102(18):8669-8675
Three bioreactor configurations were employed in these investigations, which consisted of working volumes of 10, 1.2 and 1.2 L. Power spectrum diagrams of bed pressure fluctuation were used with hydraulic retention times (HRT) and geometric factors to identify the flow regimes in the bioreactors, where HRT varied from 8 to 1 h. It was found that the flow regimes in the bioreactors changed from a dispersed regime to coalesced and slugging regimes, when the biogas production rate (BPR) increased, as a result of decreasing the operating HRT. The flow regime was a dispersed bubble regime when the HRT was higher than 4 h in the bioreactor, whereas when the HRT was 2 h the coalesced bubble phenomena occurred in the bioreactor. A slugging regime was found when the HRT was lower than 1 h in thinner bioreactor.  相似文献   
73.
Intracellular pH (pH(i)) was measured on-line in a bioreactor using a fluorescent pH(i) indicator, 9-aminoacridine, and controlled fed-batch cultivations of yeast cells based on pH(i) (FB-pH(i)) were performed. In FB-pH(i) cultivations, automated glucose additions were made to the culture in response to culture pH(i). The average ethanol (an-aerobic product) yield was significantly lower [0.12 g g(-1) glucose in fed-batch pH(i) cultivations with 100 ppm glucose additions (FB-pH(i)-100 cultivation) vs. 0.48 g g(-1) glucose in batch] and cell yield was higher (0.54 g g(-1) glucose in FB-pH(i)-100 cultivation vs. 0.3 g g(-1) glucose in batch) compared to batch cultivation. An expression has been derived to calculate changes in pH(i) from measured fluorescence values when the cell concentration increases during growth. Cultivations based on pH(i), performed with different magnitudes of glucose addition (100, 50, and 10 ppm additions), showed that lower magnitudes of glucose addition resulted in lower ethanol yields while cell yield remained unaffected. The ratio of specific oxygen uptake rate to specific glucose uptake rate (OUR/GUR) increased with decreased in magnitude of glucose additions in FB-pH(i) cultivations, suggesting that the culture aerobic state was higher when the magnitude of glucose addition was lower. The average cell productivity in FB-pH(i) cultivations was 29% higher than in batch cultivation. Cells were also cultivated at high OUR conditions, and the results are compared with other cultivations. (c) 1993 John Wiley & Sons, Inc.  相似文献   
74.
Phanerochaete chrysosporium and cultivated both mechanically agitated and pneumatic bioreactors. In the pneumatic devices, the yields of lignin and manganese peroxidases as well as extracellular protein, were considerably increased as compared with mechanically agitated bioreactors. Lignin peroxidase and manganese peroxidase activities as high as 4500 U . L(-1) and 1812 U . L(-1) respectively, were produced in an airlift bioreactor. By using enzyme markers, the secretion pathway and the respiration were shown to be dramatically activated in pneumatic bioreactors. The general metabolism of the fungus, when cultivated in the conventional fermentors, is oriented toward the synthesis of biomass at the expense of the synthesis of peroxidases. The use of pneumatic devices for the production of extracellular peroxidases by P. chrysosporium, avoids shear effects due to turbine agitator in the conventional fermentors, and provides a good example for the production of shear-sensitive metabolites. (c) 1993 John Wiley & Sons, Inc.  相似文献   
75.
Oxygen mass transfer in sparged stirred tank bioreactors has been studied. The rate of oxygen mass transfer into a culture in a bioreactor is affected by operational conditions and geometrical parameters as well as the physicochemical properties of the medium (nutrients, substances excreted by the micro-organism, and surface active agents that are often added to the medium) and the presence of the micro-organism. Thus, oxygen mass transfer coefficient values in fermentation broths often differ substantially from values estimated for simple aqueous solutions. The influence of liquid phase physicochemical properties on kLa must be divided into the influence on k(L) and a, because they are affected in different ways. The presence of micro-organisms (cells, bacteria, or yeasts) can affect the mass transfer rate, and thus kLa values, due to the consumption of oxygen for both cell growth and metabolite production. In this work, theoretical equations for kLa prediction, developed for sparged and stirred tanks, taking into account the possible oxygen mass transfer enhancement due to the consumption by biochemical reactions, are proposed. The estimation of kLa is carried out taking into account a strong increase of viscosity broth, changes in surface tension and different oxygen uptake rates (OURs), and the biological enhancement factor, E, is also estimated. These different operational conditions and changes in several variables are performed using different systems and cultures (xanthan aqueous solutions, xanthan production cultures by Xanthomonas campestris, sophorolipids production by Candida bombicola, etc.). Experimental and theoretical results are presented and compared, with very good results.  相似文献   
76.
77.
78.

Background

Bone Marrow MSCs are an appealing source for several cell-based therapies. Many bioreactors, as the Quantum Cell Expansion System, have been developed to generate a large number of MSCs under Good Manufacturing Practice conditions by using Human Platelet Lysate (HPL). Previously we isolated in the human bone marrow a novel cell population, named Mesodermal Progenitor Cells (MPCs), which we identified as precursors of MSCs. MPCs could represent an important cell source for regenerative medicine applications. As HPL gives rise to a homogeneus MSC population, limiting the harvesting of other cell types, in this study we investigated the efficacy of pooled human AB serum (ABS) to provide clinically relevant numbers of both MSCs and MPCs for regenerative medicine applications by using the Quantum System.

Methods

Bone marrow aspirates were obtained from healthy adult individuals undergoing routine total hip replacement surgery and used to generate primary cultures in the bioreactor. HPL and ABS were tested as supplements to culture medium. Morphological observations, cytofluorimetric analysis, lactate and glucose level assessment were performed.

Results

ABS gave rise to both heterogeneous MSC and MPC population. About 95% of cells cultured in HPL showed a fibroblast-like morphology and typical mesenchymal surface markers, but MPCs were scarcely represented.

Discussion

The use of ABS appeared to sustain a large scale MSC production, as well as the recovery of a subset of MPCs, and resulted a suitable alternative to HPL in the cell generation based on the Quantum System.  相似文献   
79.
In the present study, we have investigated the biotransformation of toluene to its cis-dihydrodiol (cis-diol) with immobilized Pseudomonas putida UV4 cells using different conditions of immobilization with a view to improving its production. The choice of alginate and its concentration for the immobilization of the cells were found to be the most important factors affecting the production of toluene cis-diol. The concentration of minerals and oxygen in the reaction medium and the methodology of substrate addition were investigated and the optimal conditions were defined. Once the optimal conditions for biotransformations and entrapment were determined, a packed-bed and fluidized-bed reactor were evaluated for the biotransformation process. The results using air as the gas supply showed an increase in the total production from 0.15 mol cis-diol · g−1 dry cell weight (dcw) in the packed-bed reactor to 0.28 mol cis-diol · g−1 dcw in the fluidized-bed reactor. When pure oxygen was used in place of air in the fluidized-bed reactor, a dramatic increase in total production up to a maximum of 6.1 mol cis-diol · g−1 dcw using a medium flow rate of 100 ml min−1 was achieved. Under optimal conditions, a maximum rate of production of 86.9 mmol cis-diol g−1 dcw h−1 was achieved for 48 h. This was seven times higher than the rate previously reported in the literature and for a much longer period of time; consequently, the overall production observed was more than 75 times higher than the values reported in the literature.  相似文献   
80.
Ever since animal cells have been grownin-vitro, various techniques have been used to supply the cells with oxygen. The most simple and commonly used large-scale technique to provide oxygen is through the introduction of gas bubbles. However, almost since the beginning ofin-vitro cell culture, empirical observations have indicated that bubbles can be detrimental to the cells. This review will discuss the background of the problem, review the relevant research on the topic, attempt to provide a coherent summary of what we know from all of this research, and finally outline what still needs to be investigated. Specific topics to be covered include: experimental correlations of cell damage with bubbles, cell attachment to bubbles, the hydrodynamics of bubble repture, bioreactor studies, visualization studies, and computer simulations and qualification of cell death as a result of bubble rupture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号