全文获取类型
收费全文 | 1228篇 |
免费 | 25篇 |
国内免费 | 4篇 |
专业分类
1257篇 |
出版年
2024年 | 17篇 |
2023年 | 62篇 |
2022年 | 32篇 |
2021年 | 43篇 |
2020年 | 45篇 |
2019年 | 44篇 |
2018年 | 49篇 |
2017年 | 28篇 |
2016年 | 41篇 |
2015年 | 49篇 |
2014年 | 53篇 |
2013年 | 54篇 |
2012年 | 48篇 |
2011年 | 43篇 |
2010年 | 45篇 |
2009年 | 57篇 |
2008年 | 66篇 |
2007年 | 50篇 |
2006年 | 41篇 |
2005年 | 42篇 |
2004年 | 49篇 |
2003年 | 38篇 |
2002年 | 27篇 |
2001年 | 24篇 |
2000年 | 18篇 |
1999年 | 29篇 |
1998年 | 7篇 |
1997年 | 7篇 |
1995年 | 7篇 |
1994年 | 10篇 |
1993年 | 11篇 |
1992年 | 14篇 |
1991年 | 7篇 |
1990年 | 11篇 |
1989年 | 10篇 |
1988年 | 7篇 |
1987年 | 7篇 |
1985年 | 3篇 |
1984年 | 4篇 |
1983年 | 3篇 |
1982年 | 3篇 |
1981年 | 4篇 |
1980年 | 7篇 |
1979年 | 5篇 |
1978年 | 6篇 |
1977年 | 5篇 |
1975年 | 4篇 |
1974年 | 4篇 |
1973年 | 4篇 |
1972年 | 5篇 |
排序方式: 共有1257条查询结果,搜索用时 15 毫秒
71.
Jun Chen Bo Wang Yan Zheng Hui Jiang Tian Jiang Hakan Bozdoğan Junqiang Zhang Baizheng An Xiaoli Wang Haichun Zhang 《Journal of Zoological Systematics and Evolutionary Research》2020,58(1):174-193
The Mesozoic family Procercopidae is widely treated as the ancient group of Cercopoidea and a transitional unit to recent lineages, but its evolution and diversity are vague due to fragmentary fossil record and confusing taxonomic history. Herein, an extensive taxonomic review of Procercopidae is presented and some new fossils are reported from the Lower Cretaceous Yixian Formation of NE China. As a result, Chengdecercopis Hong, 1983 is transferred from Procercopidae to Sinoalidae; Procercopis longipennis Becker-Migdisova, 1962 and P shawanensis Zhang, Wang and Zhang, 2003 are transferred to Procercopina Martynov, 1937, resulting in Procercopina longipennis (Becker-Migdisova, 1962), comb. n. and P shawanensis (Zhang, Wang and Zhang, 2003), comb. n.; Luanpingia senjituensis Hong, 1984 is transferred to Stellularis Chen, Yao and Ren, 2015, leading to Stellulari senjituensis (Hong, 1984), comb. n.; Anthoscytina macula Hu, Yao and Ren, 2014 is transferred to Sinocercopis Hong, 1982, and Sunoscytinopteris (Scytinopteridae) and Cathaycixius (Cixiidae) are treated as junior homonym names of Sinocercopis, leading to Sinocercopis macula (Hu, Yao and Ren, 2014), comb. n., S lushangfenensis (Hong, 1984), comb. n., S pustulosis (Ren, 1995), comb. n., and S trinervis (Ren, 1995), comb. n. Additionally, two new species are erected: Stellularis bineuris Chen and Wang, sp. n. and S minutus Chen and Wang, sp. n. Our cladistic analysis based on wing (tegmen and hind wing) characteristics recovers the high-level relationships within Cercopoidea: Sinoalidae + (Procercopidae + (Cercopionidae + modern cercopoids)). Within the family Procercopidae, the cladistic analysis reveals that the Middle to Late Jurassic Titanocercopis and Jurocercopis and the Cretaceous Cretocercopis occupy the basal position, and a gradual change in wing venation can be recognized from the Early Jurassic Procercopis and Procercopina to the Jurassic Anthoscytina, and then to the Cretaceous Stellularis and Sinocercopis. The two Cretaceous genera, sharing wing traits with extant cercopoids, likely represent transitional forms between Procercopidae and recent Cercopoidea; however, they are very similar to their Jurassic relatives in body structures, suggesting it is applicable to attribute them to Procercopidae. Furthermore, our analysis suggests that the extinction of Procercopidae and the origin and early diversification of modern Cercopoidea approximately coincided with the rise and explosive radiation of angiosperms in the late Early Cretaceous and onwards. 相似文献
72.
Background and Aims
For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic numbers in the family.Methods
Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera of Araceae.Key Results
The previously inferred basic numbers x = 14 and x = 7 are rejected. Instead, maximum likelihood optimization revealed an ancestral haploid chromosome number of n = 16, Bayesian inference of n = 18. Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less frequently and mainly towards the tips of the tree.Conclusions
The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromosome number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information), with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades. 相似文献73.
Sanvesh Srivastava Wenyi Wang Ganiraju Manyam Carlos Ordonez Veerabhadran Baladandayuthapani 《EURASIP Journal on Bioinformatics and Systems Biology》2013,2013(1):9
Background
Recent advances in genome technologies and the subsequent collection of genomic information at various molecular resolutions hold promise to accelerate the discovery of new therapeutic targets. A critical step in achieving these goals is to develop efficient clinical prediction models that integrate these diverse sources of high-throughput data. This step is challenging due to the presence of high-dimensionality and complex interactions in the data. For predicting relevant clinical outcomes, we propose a flexible statistical machine learning approach that acknowledges and models the interaction between platform-specific measurements through nonlinear kernel machines and borrows information within and between platforms through a hierarchical Bayesian framework. Our model has parameters with direct interpretations in terms of the effects of platforms and data interactions within and across platforms. The parameter estimation algorithm in our model uses a computationally efficient variational Bayes approach that scales well to large high-throughput datasets.Results
We apply our methods of integrating gene/mRNA expression and microRNA profiles for predicting patient survival times to The Cancer Genome Atlas (TCGA) based glioblastoma multiforme (GBM) dataset. In terms of prediction accuracy, we show that our non-linear and interaction-based integrative methods perform better than linear alternatives and non-integrative methods that do not account for interactions between the platforms. We also find several prognostic mRNAs and microRNAs that are related to tumor invasion and are known to drive tumor metastasis and severe inflammatory response in GBM. In addition, our analysis reveals several interesting mRNA and microRNA interactions that have known implications in the etiology of GBM.Conclusions
Our approach gains its flexibility and power by modeling the non-linear interaction structures between and within the platforms. Our framework is a useful tool for biomedical researchers, since clinical prediction using multi-platform genomic information is an important step towards personalized treatment of many cancers. We have a freely available software at: http://odin.mdacc.tmc.edu/~vbaladan.74.
Models of isolation‐by‐distance formalize the effects of genetic drift and gene flow in a spatial context where gene dispersal is spatially limited. These models have been used to show that, at an appropriate spatial scale, dispersal parameters can be inferred from the regression of genetic differentiation against geographic distance between sampling locations. This approach is compelling because it is relatively simple and robust and has rather low sampling requirements. In continuous populations, dispersal can be inferred from isolation‐by‐distance patterns using either individuals or groups as sampling units. Intrigued by empirical findings where individual samples seemed to provide more power, we used simulations to compare the performances of the two methods in a range of situations with different dispersal distributions. We found that sampling individuals provide more power in a range of dispersal conditions that is narrow but fits many realistic situations. These situations were characterized not only by the general steepness of isolation‐by‐distance but also by the intrinsic shape of the dispersal kernel. The performances of the two approaches are otherwise similar, suggesting that the choice of a sampling unit is globally less important than other settings such as a study's spatial scale. 相似文献
75.
Robert A. Montgomery Gary J. Roloff Jay M. Ver Hoef 《The Journal of wildlife management》2011,75(3):702-708
Global Positioning System (GPS) and very high frequency (VHF) telemetry data redefined the examination of wildlife resource use. Researchers collar animals, relocate those animals over time, and utilize the estimated locations to infer resource use and build predictive models. Precision of these estimated wildlife locations, however, influences the reliability of point-based models with accuracy depending on the interaction between mean telemetry error and how habitat characteristics are mapped (categorical raster resolution and patch size). Telemetry data often foster the assumption that locational error can be ignored without biasing study results. We evaluated the effects of mean telemetry error and categorical raster resolution on the correct characterization of patch use when locational error is ignored. We found that our ability to accurately attribute patch type to an estimated telemetry location improved nonlinearly as patch size increased and mean telemetry error decreased. Furthermore, the exact shape of these relationships was directly influenced by categorical raster resolution. Accuracy ranged from 100% (200-ha patch size, 1- to 5-m telemetry error) to 46% (0.5-ha patch size, 56- to 60-m telemetry error) for 10 m resolution rasters. Accuracy ranged from 99% (200-ha patch size, 1- to 5-m telemetry error) to 57% (0.5-ha patch size, 56- to 60-m telemetry error) for 30-m resolution rasters. When covariate rasters were less resolute (30 m vs. 10 m) estimates for the ignore technique were more accurate at smaller patch sizes. Hence, both fine resolution (10 m) covariate rasters and small patch sizes increased probability of patch misidentification. Our results help frame the scope of ecological inference made from point-based wildlife resource use models. For instance, to make ecological inferences with 90% accuracy at small patch sizes (≤5 ha) mean telemetry error ≤5 m is required for 10-m resolution categorical rasters. To achieve the same inference on 30-m resolution categorical rasters, mean telemetry error ≤10 m is required. We encourage wildlife professionals creating point-based models to assess whether reasonable estimates of resource use can be expected given their telemetry error, covariate raster resolution, and range of patch sizes. © 2011 The Wildlife Society. 相似文献
76.
Nicolas Lartillot Matthew J. Phillips Fredrik Ronquist 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1699)
Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. 相似文献
77.
78.
79.
How to sample alignments from their posterior probability distribution given two strings is shown. This is extended to sampling alignments of more than two strings. The result is first applied to the estimation of the edges of a given evolutionary tree over several strings. Second, when used in conjunction with simulated annealing, it gives a stochastic search method for an optimal multiple alignment.Correspondence to: L. Allison 相似文献
80.
T. Stadler 《Journal of evolutionary biology》2013,26(6):1203-1219
Phylogenetic trees of only extant species contain information about the underlying speciation and extinction pattern. In this review, I provide an overview over the different methodologies that recover the speciation and extinction dynamics from phylogenetic trees. Broadly, the methods can be divided into two classes: (i) methods using the phylogenetic tree shapes (i.e. trees without branch length information) allowing us to test for speciation rate variation and (ii) methods using the phylogenetic trees with branch length information allowing us to quantify speciation and extinction rates. I end the article with an overview on limitations, open questions and challenges of the reviewed methodology. 相似文献